
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 5, MAY 1998 493

A New Algorithm for Error-Tolerant
Subgraph Isomorphism Detection
Bruno T. Messmer and Horst Bunke, Member, IEEE Computer Society

Abstract—In this paper, we propose a new algorithm for error-correcting subgraph isomorphism detection from a set of model
graphs to an unknown input graph. The algorithm is based on a compact representation of the model graphs. This representation is
derived from the set of model graphs in an off-line preprocessing step. The main advantage of the proposed representation is that
common subgraphs of different model graphs are represented only once. Therefore, at run time, given an unknown input graph, the
computational effort of matching the common subgraphs for each model graph onto the input graph is done only once.
Consequently, the new algorithm is only sublinearly dependent on the number of model graphs. Furthermore, the new algorithm can
be combined with a future cost estimation method that greatly improves its run-time performance.

Index Terms—Graphs, subgraph isomorphism, graph matching, error-correcting graph matching, search, graph algorithms, graph
decomposition.

——————————���F���——————————

1 INTRODUCTION

UE to their representational power, attributed graphs
are widely used in various domains of computer sci-

ence. Particularly in computer vision and pattern recogni-
tion, they have been used to represent complex structures
such as Chinese characters [11], hand-drawn symbols [10],
aerial road network images [3], 3D-objects [24], [4], and
others. In many applications, these complex structures must
be classified, detected, or compared to each other by means
of some matching scheme. By using attributed graphs for
the representation, the matching process can be formulated
as a search for graph or subgraph isomorphisms. However,
real world objects are often affected by noise such that the
graph representations of identical objects may not exactly
match. Thus, it is necessary to integrate the concept of error
correction into the matching process. Depending on the
problem domain, correspondences between the models and
the input graph can then be established by searching for ei-
ther error-correcting graph isomorphisms between the mod-
els and the input, error-correcting subgraph isomorphisms
from the models to the input, or error-correcting subgraph
isomorphisms from the input to the models. Because error-
correcting graph isomorphism is a special case of error-
correcting subgraph isomorphism, and because input graphs
are often larger than model graphs, we are particularly in-
terested in the problem of error-correcting subgraph iso-
morphism detection from a set of models to an input graph.

It is well known that subgraph isomorphism detection is
an NP-complete problem [8]. For example, the number of

computational steps required to detect all subgraph iso-
morphism from one graph to another is exponential in the
size of the underlying graphs. Consequently, error-
correcting subgraph isomorphism detection is also in NP
and generally harder than exact subgraph isomorphism
detection.

In the past, various approaches to error-correcting sub-
graph isomorphism detection have been proposed. The
most common approach is based on tree search with the A*

algorithm [15]. The search space of the A* algorithm can be
greatly reduced by applying heuristic error estimation
functions. In the domain of computer vision, numerous
heuristics have been proposed [24], [22], [5], [17], [18], [1].
All of these methods are guaranteed to find the optimal
solution but require exponential time in the worst case.
Random methods, on the other hand, are polynomially
bounded in the number of computation steps but may fail
to find the optimal solution. For example, in [9], [3] a prob-
abilistic relaxation scheme is described, which works well
for large graphs, but may miss the optimal match in some
cases. Other approaches are based on neural networks such
as the Hopfield network [6] or the Kohonen map [26].
However, all of these random methods may get trapped in
local minima and miss the optimal solution.

An additional problem in many applications is that there
is not only one, but several a priori known model graphs
that must be matched onto a single input graph. The meth-
ods for error-tolerant graph matching mentioned so far
work on only two graphs at a time. Thus, for databases
which contain more than one model graph it is necessary to
apply the graph matching method to each model-input
pair, resulting in a linear dependency on the size of the da-
tabase. This may be prohibitive for large databases. In order
to overcome this problem, some authors proposed to or-
ganize the database of graphs such that the number of er-
ror-correcting subgraph isomorphism searches can be re-
duced. For example, in [19], [21], [20], a hierarchical organi-

0162-8828/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

•� B.T. Messmer is with Corporate Technology, Swisscom AG, Ostermundi-
genstr. 93, CH-3000 Bern 29, Switzerland.
E-mail: Bruno.Messmer@swisscom.com.

•� H. Bunke is with Institut für Informatik und angewandte Mathematik,
University of Bern, Neubrückstr. 10, CH-3012 Bern, Switzerland.
E-mail: bunke@iam.unibe.ch.

Manuscript received 7 Dec. 1995; revised 22 Dec. 1997. Recommended for accep-
tance by K. Boyer.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 106430.

D

494 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 5, MAY 1998

zation of the database was proposed, where the hierarchy is
determined by clustering the model graphs into similarity
classes. For a given input graph, the hierarchy is traversed
by first matching the input graph onto the root of the hier-
archy and then choosing the branch that represents the
class of model graphs which are most similar to the input.
The indexed class of model graphs is then again clustered
into similarity classes or, if only few models are left, each of
them is directly matched with the input graph. Another
hierarchical organization was proposed in [16], where at the
root of the hierarchy a supergraph, consisting of different
distinct subgraphs of the model graphs is placed and
matched against the input. The disadvantage of this
scheme, however, is that the root graph may become much
larger than the individual model graphs and thus the first
matching process may be more time consuming than the
sum of each individual graph match between a model and
the input.

In this paper, we present a new approach to the problem
of error-correcting subgraph isomorphism detection be-
tween a database of model graphs and an unknown input
graph. The approach is based on a compact representation
of the model graphs. This representation is derived from
the model graphs in an off-line preprocessing step. In this
preprocessing step, the model graphs are decomposed into
smaller subgraphs and represented in terms of these sub-
graphs. If a subgraph appears multiple times within the
same model graph or in different models, it will be repre-
sented only once. Hence, the resulting representation of the
models is very compact. At run time, this compact repre-
sentation is used to efficiently detect error-tolerant sub-
graph isomorphisms from the model graphs to the input.
Common subgraphs that are part of different model graphs
are matched only once with the input. Consequently, the
complexity of the new algorithm is only sublinearly de-
pendent on the size of the database. Furthermore, the algo-
rithm can be combined with a very efficient future cost es-
timation technique.

The rest of this paper is organized as follows. In Section 2
the main definitions and notation that will be used
throughout the paper are given. A description of the new
algorithm is given in Section 3. In Section 4, a number of
practical experiments are described. Finally, in Section 5 a
discussion and conclusions are provided.

2 DEFINITIONS AND NOTATION

The algorithms presented in this paper work on labeled
graphs. Let LV and LE denote the set of vertex and edge la-
bels, respectively.

DEFINITION 1. A graph G is a four-tuple G = (V, E, µ, ξ), where

•� V is the set of vertices,
•� E ⊆ V × V is the set of edges,
•� µ: V → LV is a function assigning labels to the vertices,
•� ξ: E → LE is a function assigning labels to the edges.

In this definition, the edges are directed, i.e., there is an
edge from v1 to v2 if (v1, v2) ∈ E. For graphs with undirected
edges, we require that (v2, v1) ∈ E for any edge (v1, v2) ∈ E.

DEFINITION 2. Given a graph G = (V, E, µ, ξ), a subgraph of G is
a graph S = (Vs, Es, µs, ξs) such that

1)�Vs ⊆ V
2)�Es = E > (Vs × Vs)
3)�µs and ξs are the restrictions of µ and ξ to Vs and Es, re-

spectively, i.e.,

m m
s

sv v v V0 5 0 5= ¶%&'
if

undefined otherwise

x x
s

se e e E0 5 0 5= ¶%&'
if

undefined otherwise

From this definition it is easy to see that, given a graph
G, any subset of its vertices uniquely defines a subgraph of
G. We use the notation S ⊆ G to indicate that S is a sub-
graph of G.

DEFINITION 3. Given a graph G = (V, E, µ, ξ) and a subgraph S
= (Vs, Es, µs, ξs) of G, the difference of G and S is the sub-
graph of G that is defined by the set of vertices V − Vs.

The difference of a graph G and a subgraph S of G is de-
noted by G − S.

DEFINITION 4. Given two graphs G1 = (V1, E1, µ1, ξ1), G2 = (V2,
E2, µ2, ξ2), where V1 > V2 = ∅, and a set of edges E′ ⊆ (V1
× V2) < (V2 × V1) with a labeling function ξ′: E′ → LE, the
union of G1 and G2 with respect to E′ is the graph G = (V,
E, µ, ξ) such that

1)�V = V1 < V2

2)�E = E1 < E2 < E′

3)�µ µ
µv

v v V
v v V

0 5 0 5
0 5= ∈

∈
%&'

1 1

2 2

if
if

4)�x
x
x
x

e
e e E
e e E
e e E

0 5
0 5
0 5
0 5

=
¶
¶

� ¶ �

%
&K
'K

1 1

2 2

if
if
if

The union of two graphs G1 and G2 with respect to a set
of edges E′ according to Definition 4 will be denoted by
G1 <E′ G2.

DEFINITION 5. A bijective function f : V → V′ is a graph iso-
morphism from a graph G = (V, E, µ, ξ) to a graph G′ =
(V′, E′, µ′, ξ′) if:

1)�µ(v) = µ′(f(v)) for all v ∈ V.
2)�For any edge e = (v1, v2) ∈ E there exists an edge e′ =

(f(v1), f(v2)) ∈ E′ such that ξ(e) = ξ′(e′), and for any
� = � � ¶ �e v v E1 2,2 7 there exists an edge e =

f v f v E- -� � ¶1
1

1
22 7 2 74 9, such that ξ(e) = ξ′(e′).

DEFINITION 6. An injective function f : V → V′ is a subgraph
isomorphism from G to G′ if there exists a subgraph S ⊆
G′ such that f is a graph isomorphism from G to S.

Apparently, graph isomorphism is a special case of sub-
graph isomorphism. For the remainder of this paper, we
will assume that there is a number of a priori known
graphs, the so-called model graphs, and an input graph,
which is given on-line. The input and model graphs will be
also referred to as input and models, for short.

MESSMER AND BUNKE: A NEW ALGORITHM FOR ERROR-TOLERANT SUBGRAPH ISOMORPHISM DETECTION 495

Real-world objects which are represented by graphs may
be affected by noise and distortions. In order to compare
the undistorted model graphs to a distorted input graph
and decide which of the models is most similar to the input,
it is necessary to define a distance measure for graphs.
Similar to the string matching problem where edit opera-
tions are used to define the string edit distance [23], we de-
fine a subgraph edit distance that is based on the idea of
compensating the distortions in the input graph by means
of edit operations that are applied to the model graphs [1].
That is, the graph edit operations are used to alter the
model graphs until there exist subgraph isomorphisms to
the input graph. To each of the graph edit operations, a
certain cost is assigned. The subgraph distance from a
model to an input graph is then defined to be the minimum
cost taken over all sequences of edit operations that are
necessary for the compensation of the distortions in the
input graph. It can be concluded that the smaller the sub-
graph distance between a model and an input graph is, the
more similar they are. We consider the following distortions
in a graph: vertex and edge label distortions, missing verti-
ces, and missing or extraneous edges. Notice that it is not
necessary to consider extraneous vertices in the input graph
as we are searching for subgraph isomorphisms from the
model to the input graph. Thus, extraneous vertices in the
input graph are automatically ignored. For each type of
distortion given above, a corresponding graph edit opera-
tion is defined.

DEFINITION 7. Given a graph G = (V, E, µ, ξ), a graph edit op-
eration δ on G is any of the following:

•� µ(v) → l, v ∈ V, l ∈ LV: substituting the label µ(v) of ver-
tex v by l (for the correction of vertex label distortions).

•� ξ(e) → l′, e ∈ E, l′∈ LE: substituting the label ξ(e) of edge e
by l′ (for the correction of edge label distortions).

•� v → $, v ∈ V: deleting the vertex v from G (for the correc-
tion of missing vertices).1

•� e → $, e ∈ E: deleting the edge e from G (for the correction
of missing edges).

•� $ → e = (v1, v2), v1, v2 ∈ V: inserting an edge between two
existing vertices v1, v2 of G (for the correction of extraneous
edges).

In order to model the fact that certain distortions are
more likely than others, each graph edit operations δ is as-
signed a certain cost C(δ). The costs of the graph edit op-
erations are strongly application dependent and must be
defined on the basis of heuristic knowledge.

The five edit operations in Definition 7 are powerful
enough to transform any graph G into a subgraph of any
other graph G′. Therefore, it is always possible to find a
sequence of edit operations that transform a model graph G
into another graph G′ such that a subgraph isomorphism f
from G′ to a distorted input graph GI exists.

DEFINITION 8. Given a graph G = (V, E, µ, ξ) and an edit opera-
tion δ, the edited graph, δ(G), is a graph δ(G) = (Vδ, Eδ,
µδ, ξδ) with

1. Note that all edges in G that are incident with the vertex v are deleted,
too.

1)�V V v v
Vδ

δ= − = →%&'
: ? 1 6if

otherwise
$

2)�E
E e e
E e e
E V V

d

d d

d
d=
= �

- = �
�

%
&K
'K

U

I

: ? 1 6
: ? 1 6
2 7

if
if
otherwise

$
$

3)�µ δ µ
µδ v
l v l

v
0 5 0 52 7

0 5= = →%&'
if
otherwise

4)�x d x
xd e
l e l

e
0 5 0 52 7

0 5= = �%&'
if
otherwise

DEFINITION 9. Given a graph G = (V, E, µ, ξ) and a sequence of
edit operations ∆ = (δ1, δ2, …, δk), the edited graph, ∆(G),
is a graph ∆(G) = δk(… δ2(δ1(G))) …).

The total cost of the transformation of G into ∆(G) is

given by C C ii

k
D0 5 2 7=

=Í d
1

. We can now combine the con-

cepts of edited graph and subgraph isomorphism into the
concept of error-correcting subgraph isomorphism.

DEFINITION 10. Given two graphs G and G′, an error-correcting
(ec) subgraph isomorphism f from G to G′ is a two-tuple
f = (∆, f∆) where

1)�∆ is a sequence of edit operations such that there exists a
subgraph isomorphism from ∆(G) to G′,

2)�f∆ is a subgraph isomorphism from ∆(G) to G′.

The cost of an ec subgraph isomorphism f = (∆, f∆) is the
cost of the edit operations ∆, i.e., C(f) = C(∆). It is easy to see
that there is usually more than one sequence of edit opera-
tions ∆ such that a subgraph isomorphism from ∆(G) to G′
exists and, consequently, there is usually more than one
error-correcting subgraph isomorphism from G to G′. For
our distance measure, we are particularly interested in the
error-correcting subgraph isomorphism with minimum
cost.

DEFINITION 11. Let G and G′ be two graphs. The subgraph dis-
tance from G to G′, d(G, G′), is given by the minimum cost
taken over all error-correcting subgraph isomorphisms f
from G to G′:

d(G, G′) = MIN∆{C(∆)|there is an ec subgraph isomorphism

f = (∆, f∆) from G to G′}

The ec subgraph isomorphism f associated with d(G, G′)
is called the optimal error-correcting (oec) subgraph iso-
morphism from G to G′. Notice that the subgraph distance
according to Definition 11 is in general not symmetric, i.e.,
d(G, G′) ≠ d(G′, G). Therefore, it is important to note that
the proposed algorithm is designed to compute the graph
distance from the model graph G to the input graph GI,
d(G, GI), and not vice versa.

3 A NEW ALGORITHM FOR ERROR-CORRECTING
SUBGRAPH ISOMORPHISM DETECTION

3.1 Overview
In the previous section it was shown that, given a set of
models G1, …, GN and an input graph GI, the traditional
algorithm can only match a single model graph, Gi, at a

496 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 5, MAY 1998

time to the input graph GI. We now propose a new method
in which the model graphs are not treated individually but
integrated in a common data structure. This data structure
is then directly used to find the oec subgraph isomorphisms
from any of the models to the input.

The basic idea of the new method is to recursively de-
compose the model graphs off-line into smaller subgraphs.
In particular, each model graph is decomposed into two
subgraphs and each of these subgraphs is again decom-
posed until the remaining subgraphs consist of only one
vertex. The subgraphs resulting from this decomposition
process are recorded and the model graphs are represented
in terms of these subgraphs. The main advantage of this
scheme is that subgraphs which appear in different model
graphs are represented only once and can be reused for
each of the model graphs. Hence, this representation of
the model graphs is fairly compact. Notice that this repre-
sentational scheme is similar to the RETE network used in
forward-chaining production systems [7], [12]. At run
time, given an unknown input graph, the search for ec
subgraph isomorphisms is first performed for the smallest
subgraphs of the model graphs. Next, the ec subgraph
isomorphisms with the least edit costs are recursively
combined to form ec subgraph isomorphisms for the com-
plete model graphs. Due to the fact that common sub-
graphs of different model graphs are represented only
once, it is sufficient to match these common subgraphs
only once onto the input graph. Consequently, the new
method is only sublinearly dependent on the number of
model graphs. Furthermore, the efficiency of the method
can be greatly enhanced by the addition of a future cost
estimation technique.

In the following, we introduce the representation of the
model graphs and the new oec subgraph isomorphism de-
tection algorithm in detail.

3.2 The Data Structures
The new algorithm works on a set B = {G1, …, GN} of model
graphs, that are known a priori, and an input graph that
becomes available at run time only. In an off-line preproc-
essing step, the model graphs are compiled into a compact
representation. At run time, this representation is used to
efficiently detect the oec subgraph isomorphism fi from a
model graph Gi to the input graph such that the corre-
sponding graph distance d(Gi, GI) is minimal over all model
graphs, i.e.,

C(fi) = d(Gi, GI) = MINj{d(Gj, GI)| j = 1, …, N} (1)

The compilation of the model graphs in the preprocess-
ing step is based on the idea of decomposing each model
graph into two distinct subgraphs. Then, each of these sub-
graphs is again decomposed into smaller subgraphs until
all subgraphs consist of single vertices and cannot be de-
composed any further.

DEFINITION 12. Let B = {G1, …, GN} be a set of model graphs. A
decomposition of B, D(B), is a finite set of four-tuples
(G, G′, G′′, E), where

1)�G, G′, and G′′ are graphs with G′ ⊂ G and G′′ ⊂ G
2)�E is a set of edges such that G = G′ <E G′′

3)�For each Gi there exists a four-tuple (G, G′, G′′, E) ∈
D(B) with G = Gi; i = 1,…, N.

4)�For each four-tuple (G, G′, G′′, E) ∈ D(B) there ex-
ists no other four-tuple G G G E D B1 1 1 1, , ,� �� ¶2 7 0 5 with

G = G1.
5)�For each four-tuple (G, G′, G′′, E1) ∈ D(B)

a)� if G′ consist of more than one vertex then there
exists a four-tuple G G G E D B1 1 1 1, , ,� �� ¶2 7 0 5 such

that G′ = G1

b)� if G′′ consists of more than one vertex then
there exists a four-tuple G G G E D B2 2 2 2, , ,� �� ¶2 7 0 5
such that G′′ = G2

c)� if G′ consists of one vertex then there exists no
four-tuple G G G E D B3 3 3 3, , ,� �� ¶2 7 0 5 such that

G′ = G3

d)� if G′′ consists of one vertex then there exists no
four-tuple G G G E D B4 4 4 4, , ,� �� ¶2 7 0 5 such that

G′′ = G4.
Informally speaking, a decomposition is a recursive par-

titioning of graphs into smaller subgraphs, starting with
complete models and terminating at the level of single ver-
tices. The first component in a four-tuple (G, G′, G′′, E) is
the graph to be decomposed, G′ and G′′ are its two parts,
and E are the edges in G between G′ and G′′ (see Conditions
1 and 2 in Definition 12). Condition 3 in Definition 12
makes sure that every model in B is decomposed, and Con-
dition 4 implies that a decomposition is unique. By means
of Condition 5 it is guaranteed that a decomposition is com-
plete, i.e., the process of partitioning a graph into two parts is
continued until individual vertices are reached. If several
models Gi, Gj, … have a common subgraph G, or if G occurs
multiple times in one model Gi, it is sufficient to represent
G just by one four-tuple (G, G′, G′′, E) in D(B). This prop-
erty not only leads to a compact representation of a set of
models, B, by means of the decomposition D(B), but it also
is the key to an efficient matching procedure at run time.

In Fig. 1, an example of the representation of two graphs
g1, g2 in a decomposition D12 is given. The decomposition
D12 consists of the four four-tuples (g2, s1, s2, {e5}), (g1, s2,
s5,{e3, e4}), (s1, s3, s2, {e2}), and (s2, s4, s5, {e1}). Notice that D12 is
displayed as a hierarchical network. In this graphical repre-
sentation, each subgraph s1, s2, s3, s4, s5 and each graph g1
and g2 is represented by a network node and for each tuple
(S, S′, S′′, E) ∈ D12, there is a network edge from the node
for S′ to the node for S and a network edge from the node
for S′′ to the node for S. The network nodes are ordered
from top to bottom according to the size of the subgraph
they represent. At the top of the network, the nodes repre-
senting the subgraphs s3, s4, and s5 are displayed. On the
next level, the subgraph s2 which consists of the subgraphs
s4 and s5 and the connecting edge e1 is given, followed by
the subgraph s1 and the model graph g1. Finally, at the bot-
tom of the network, the model graph g2 which is decom-
posed into the subgraphs s1, s2 and the edge e5 is displayed.
Notice that the subgraph s2 appears twice in the model
graph g2 and once in the model graph g1, but is represented
only once in the decomposition.

MESSMER AND BUNKE: A NEW ALGORITHM FOR ERROR-TOLERANT SUBGRAPH ISOMORPHISM DETECTION 497

A decomposition algorithm is described in [14]. Notice
that model graphs can be decompressed in various ways, in
general.

3.3 The Algorithm
The new on-line algorithm for oec subgraph isomorphism
detection is based on the decomposition of the model
graphs. Given a set of models B = {G1, …, GN}, a decompo-
sition D(B) and an input graph GI, the new algorithm first
searches for ec subgraph isomorphisms for the subgraphs
occurring in D(B). The ec subgraph isomorphisms that are
found are then combined to form ec subgraph isomor-
phisms for the full models G1, …, GN. For example, in Fig. 1,
the algorithm first matches the subgraphs s3, s4, and s5
onto the graph GI. Next, the algorithm tries to combine ec
subgraph isomorphisms that were found for s4 and s5 in
order to form ec subgraph isomorphisms for s2 and so on.
There are three basic problems that must be solved by the
algorithm:

Problem (I) For each subgraph S in the decomposition that
consists of a single vertex only, find all ec subgraph
isomorphisms from S to GI.

Problem (II) For each subgraph S in the decomposition that
consists of more than one vertex and is decomposed
into subgraphs S1 and S2, i.e., (S, S1, S2, E) ∈ D(B),
combine ec subgraph isomorphisms that are found for
S1 and S2 such that ec subgraph isomorphisms from S
to GI result.

Problem (III) The sequence in which ec subgraph isomor-
phisms for subgraphs in the decomposition are com-
bined must be controlled intelligently in order to
avoid combinatorial explosion.

In the following, we examine each of the above problems
individually and then formally describe the new algorithm
for oec subgraph isomorphism detection.

Problem (I) Given a subgraph S that consist of only one

vertex v and an input graph GI, the ec subgraph iso-

morphisms from S to GI can be generated by mapping

v onto each of the vertices in GI and registering the
necessary substitution operation. Additionally, the
possible deletion of v must be taken into account as
well. In Fig. 2, the procedure vertex_matching is dis-
played. It takes as arguments the single vertex v, its

label l and an input graph GI, and returns the set F of

all ec subgraph isomorphisms from v to GI. In the be-

ginning, F is initialized as empty. In step 2, for each vI

in VI an ec subgraph isomorphism f = (∆, f∆) is gener-

ated where ∆ consist of the substitution of l by µI(vI),

i.e., ∆ = ((l → µ(vI))), and f∆(v) = vI. Each of these ec
subgraph isomorphisms is collected in F. Finally, in
order to account for the possible deletion of a vertex
from the model graph, the ec subgraph isomorphism

Fig. 1. Two model graph g1 and g2 and a graphical representation of the corresponding decomposition D12.

498 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 5, MAY 1998

� = � �f fD D,2 7 , where ∆′ = ((v → $)) denotes the deletion

of v and f∆′ is the null function, is generated and
added to F. The set F is then output.

Problem (II) Given is a graph S that is decomposed into S1

and S2, i.e., (S, S1, S2, E) ∈ D. Moreover, let

f f1 1 1
= D D,4 9 and f f2 2 2

= D D,4 9 be two ec subgraph

isomorphisms from S1 and S2 to GI, respectively. The
problem is to find an ec subgraph isomorphism f from

S = S1 <E S2 to GI that is based on f1 and f2. Clearly, f1

and f2 can only be combined if no two vertices in

∆1(S1) and ∆2(S2) are mapped onto the same input
vertex. More precisely, the intersection of the images
of fD1

 and fD2
 must be empty. If this is the case, then f1

and f2 can be combined into an ec subgraph isomor-

phism f from S to GI. In Fig. 3, the procedure combine
for the combination of ec subgraph isomorphisms is
displayed. The input to combine consists of two graphs
S1, S2, a set of edges E connecting S1 and S2, an input

graph GI, and two ec subgraph isomorphisms f1, f2 for

S1 and S2, respectively. In the beginning of the proce-
dure, it is tested whether the intersection
f V f V∆ ∆1 21 22 7 2 7I is empty. If it is not empty, then the

procedure exits immediately. Otherwise, an ec sub-
graph isomorphism f is constructed from f1 and f2. The

construction of an ec subgraph isomorphism f = (∆, f∆)

from f1 and f2 requires that a set of edit operations ∆
and a subgraph isomorphism f∆ are generated on the

basis of ∆1, ∆2 and f∆1
, f∆2

, respectively, such that f∆ is

a subgraph isomorphism from ∆(S1 <E S2) to GI. Due

to the fact that the edit operations on the subgraphs S1

and S2 are contained in ∆1 and ∆2, it is easy to see that

∆ is a concatenation of ∆1, ∆2 and the set ∆E of edge
operations on E, i.e.,

∆ = ∆1 + ∆2 + ∆E (2)

For the construction of ∆E, three possible edge edit
operations must be considered for each edge specified

in E. First, for each edge e = (vi, wj) in E there must be

an edge e f v f w EI i j I= ¶D D1 2
2 7 4 94 9, . If eI exists and ν(e)

≠ νI(eI) then, depending on the respective costs, ei-

ther the label ν(e) is substituted by the label νI(eI) or e

is deleted and eI is subsequently inserted. That is, if

C(ν(e) → νI(eI)) ≤ C(e → $) + C($ → eI) then the sub-

stitution of ν(e) by νI(eI) must be added to ∆E. Other-

wise, the deletion of e and the insertion of eI must be

added to ∆E. Secondly, if eI does not exist then the de-

letion of e = (vi, wj) from the graph S1 <E S2 must be

added to ∆E. Thirdly, if there is an edge

e f v f wI i j= D D1 2
2 7 4 94 9, in the input but no correspond-

ing edge e = (vi, wj) is specified in E, then the insertion

of e into S1 <E S2 must be added to ∆E. With this, ∆ =
∆1 + ∆2 + ∆E contains all edit operations that are neces-

sary such that there exists a subgraph isomorphism f∆

from ∆(S1 <E S2) to GI. The subgraph isomorphism f∆
is then defined as

f v
f v v V
f v v V∆
∆ ∆

∆ ∆
0 5 0 5

0 5=
∈
∈

%&K'K
1 1

2 2

if
if

 (3)

for all v V V¶ D D1 2
U . Finally, in step 4, the ec subgraph

isomorphism f = (∆, f∆) is output.

Problem (III) Given a decomposition D and an input graph

GI, ec subgraph isomorphisms for the models in D can
be found by applying the solutions to the Problems I
and II described above. Namely, for all subgraphs S in
D that consist of a single vertex, all ec subgraph iso-
morphisms are first generated by calling the proce-
dure vertex_matching. Next, all of these ec subgraph
isomorphisms are combined to form ec subgraph iso-

COMBINE(S1, S2, E, GI, f1, f2)

1. let f f f f S1 1 2 2 1 11 2
= = =∆ ∆ ∆∆ ∆, , , ,4 9 4 9 2 7
V E v S V E v∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆∆

1 1 1 1 2 2 2 22 2, , , , , , ,µ µ4 9 2 7 4 9=

2. If f V f V∆ ∆ ∆ ∆1 1 2 34 9 4 9I ≠ ∅ then exit

3. combine f1 and f2 to form an ec subgraph isomorphism

f = (∆, f∆) from S1 <E S2 to GI, with

f v
f v v V
f v v VD
D D

D D
0 5 0 5

0 5=
¶
¶

%&K'K
1 1

2 2

if
if

 for all v V V∈ ∆ ∆1 2
U and

∆ = ∆1 + ∆2 + ∆E

 where ∆E is the set of edit operations on the edges in E

 connecting S1 and S2 (see text).
4. output f

Fig. 3. Algorithm combine.

VERTEX_MATCHING(v, l, GI)

1. let F = ∅ and GI = (VI, EI, µI, νI)

2. for all vI ∈ VI

a)� generate an ec subgraph isomorphism f = (∆, f∆)
b)� F = F < {f}

3.�create f ′ = (∆′, f∆′) with ∆′=(v → $) and f∆′ = ∅ and set F =

F < {f ′}
4. output F

Fig. 2. Algorithm vertex_matching.

MESSMER AND BUNKE: A NEW ALGORITHM FOR ERROR-TOLERANT SUBGRAPH ISOMORPHISM DETECTION 499

morphisms for the larger subgraphs by calling the
procedure combine until ec subgraph isomorphisms for
the model graphs emerge. However, if all ec subgraph
isomorphisms that are found are immediately used
for combination regardless of their edit costs, their
number will explode combinatorially. Thus, given a
graph S that is decomposed into S1, S2, we propose to
store the ec subgraph isomorphisms that are found for
S1 and S2 locally, and then choose the ec subgraph
isomorphisms with the least cost for combination. For
this purpose, we introduce two ordered lists, open and
closed, that are attached to each subgraph in D. Infor-
mally speaking, the list closed holds all ec subgraph
isomorphisms that have already been used for combi-
nation. Furthermore, only ec subgraph isomorphisms
that are stored in the list closed of the subgraph S1 may
be used for combination with ec subgraph isomor-
phisms for the corresponding subgraph S2, and vice
versa. The list open, on the other hand, holds all ec
subgraph isomorphisms that have not yet been used
for combination due to their costs. Thus, an ec sub-
graph isomorphism f1 that is found for some sub-

graph S1 is stored in open(S1) before it is used for fur-
ther combinations. Let

 C open S12 7 =

MIN C f f open S open Sf 1 6 2 7= B 2 7∈
∞
%&K'K

1 1if is not empty
otherwise

 (4)

denote the least cost of any ec subgraph isomorphisms
in open(S1). Now, the next ec subgraph isomorphism
that is to be used for combination is selected accord-
ing to C[open(S1)]. If C(f1) = C[open(S1)] is minimal
over all subgraphs Si in D then f1 is removed from
open(S1) and stored in the list closed(S1). Analogously
to C[open(S1)], let

 C closed S12 7 =

MIN C f f closed S closed Sf 1 6 2 7= B 2 7∈
∞
%&K'K

1 1if is not empty
otherwise

 (5)

denote the least cost of any ec subgraph isomor-
phism in closed(S1). After f1 has been removed from
open(S1) and stored in closed(S1) it is combined with
all ec subgraph isomorphisms that were found for S2.
More precisely, f1 is combined with all ec subgraph
isomorphisms that are already stored in closed(S2)
(but not with those stored in open(S2)). This process
guarantees that new ec subgraph isomorphisms are
always built from ec subgraph isomorphisms with
minimal cost.

Based on the procedures vertex_matching and combine
and the lists open and closed, the new method for oec sub-
graph isomorphism detection is now formally described in
Fig. 4. The input to the algorithm NSG consists of the de-
composition D which represents the set of model graphs G1,
…, GN and the input graph GI. In the beginning, open(S) and
closed(S) are empty for each S in D. In step 1 all ec subgraph

isomorphisms for subgraphs S consisting of a single vertex
are generated and stored in open(S) by calling the procedure
vertex_matching. Next, in step 2, a subgraph S1 is selected
such that C[open(S1)] + h(S1) is smaller than a given accep-
tance threshold T and minimal over all subgraphs in D. At
first, the acceptance threshold T is set to the maximal cost
that any ec subgraph isomorphism from the models to the
input may have. Note that this maximal cost is strongly
application dependent. It may be set to infinity. Later, in
step 4, it will be reset to the cost of some oec subgraph iso-
morphism actually found for any of the models. In addition
to the actual costs C[open(S1)] there is also an evaluation
function h(S1) taken into account. For the moment, we as-
sume that h(S1) is constant and set to zero for all S, i.e., h(S)
= 0 for all S in D. (For details of h(S1) see [14]). After select-
ing a subgraph S1 for which the condition in step 2 holds,
the ec subgraph isomorphism f ∈ open(S1) with costs C(f1) =
C[open(S1)] is removed from open(S1) and added to the list
closed(S1) in step 3. Next, in step 4 it is checked whether S1 is
one of the model graphs Gi. If this is the case, f1 represents
the oec subgraph isomorphism from Gi to GI. This follows
directly from the selection process in steps 2 and 3. By al-
ways selecting the ec subgraph isomorphism f1 with the
minimal costs, it is guaranteed that no other ec subgraph
isomorphism for any of the graphs or subgraphs in the de-
composition D has cost less than C(f1). Hence, the ec sub-
graph isomorphism f1 for the model graph Gi is optimal.
For some applications, it may be sufficient to find only one
oec subgraph isomorphism. In that case, the algorithm can
be terminated if the condition in step 4 is satisfied. Other-
wise, if all oec subgraph isomorphisms with equal cost are
to be found (as it is assumed here), the acceptance threshold
T can be reset to C(f1) in step 4. This guarantees that the

NSG(D, GI)

1. for all S in D with S = (Vs, Es, µs, νs) and |Vs| = 1, {v} =

Vs.

 a) F = vertex_matching(v, µs(v), GI)
 b) open(S) = F

2. choose S1 such that C[open(S1)] + h(S1) ≤ T and minimal in

D. If no such S1 exists, goto 7.

3. choose f1 ∈ open(S1) such that C(f1) is minimal in open(S1);

 remove f1 from open(S1) and set closed(S1) = closed(S1) <

{f1}.

4. if S1 is a model graph Gi then reset the acceptance thresh-
old

 to T = C(f1).

5. for all (S, S1, S2, E) ∈ D or (S, S2, S1, E) ∈ D do

 a) for all f2 ∈ closed(S2)

 i) f = combine(S1, S2, E, GI, f1, f2)
 ii) if f is not empty then add f to open(S), i.e., open(S) =
 open(S) < {f}
6. goto 2.

7. for each model Gi in D, i = 1 …, N output closed(Gi).

Fig. 4. Algorithm NSG.

500 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 5, MAY 1998

algorithm only searches for ec subgraph isomorphisms with
costs equal to the cost of the oec subgraph isomorphism
already found. In step 5, new ec subgraph isomorphisms
are generated by means of combination. All graphs S which
are decomposed into S1 and some subgraph S2, i.e., (S, S1,
S2, E) or (S, S2, S1, E) ∈ D, are selected. Then, each ec sub-
graph isomorphism f2 in closed(S2) is combined with f1 in
order to form an ec subgraph isomorphism f from S to GI.
For this purpose, the procedure combine is called with S1, S2,
the connecting edges E, the input graph GI and the ec sub-
graph isomorphisms f1, f2 as arguments. If combine is suc-
cessful, an ec subgraph isomorphism f from S to GI is re-
turned and stored in open(S). When all ec subgraph isomor-
phisms f2 in closed(S2) have been combined with f1, the proc-
ess continues in step 2. Finally, when there are no more
subgraphs S1 with C[open(S1)] + h(S1) ≤ T, all oec subgraph
isomorphisms that were found for the models G1, …, GN are
output in step 7 and the algorithm terminates.

For details of the lookahead procedure see [14].

4 EXPERIMENTAL RESULTS

For a theoretical computational complexity analysis of the
new algorithm see [14]. In order to study the behavior of
the new algorithm in practice, we performed a number of
experiments with randomly generated graphs. The new
algorithm (NSG) was implemented in C++ and run on a
SunSparc Workstation. For comparison reasons, we also
implemented a traditional A*-based algorithm (TA) with
the lookahead procedure described in [25]. The graphs used
in the experiments were randomly generated on the basis of
the following quantities:

•� the number of vertices,
•� the number of edges,
•� the number of different vertex labels (all edges were

unlabeled),
•� the number of graphs in the database,
•� the degree of label distortion, and
•� the number of missing vertices.

For each experiment, a set of labeled model graphs con-
sisting of a specified number of vertices and edges was
randomly generated. Each vertex in a model graph was
randomly assigned a label out of a finite subset of the inte-
gers. From each model graph a corresponding input graph
was derived by copying and permuting the vertices and

edges. Then, the input graph was subject to label distortion
by randomly changing the labels of a specified number of
vertices. Finally, a specified number of vertices were de-
leted from the input graph along with their incident edges.
As mentioned before, an important factor in any practical
application of ec subgraph isomorphism algorithms is the
definition of the costs of the edit operations. In all our ex-
periments, the cost for substituting a label l1 with a label l2
was set to Cs|l1 − l2|, where |l1 − l2| denotes the absolute
difference between l1 and l2, and Cs is a constant. The cost of
inserting a vertex and inserting or deleting an edge was
constantly set to Cd and Ce, respectively.

The objective of each experiment was to measure and
compare the computation times needed by NSG and TA in
detecting the optimal error-correcting subgraph isomor-
phism from any of the model graphs to the input graph.
Each measurement was repeated 20 times with different
graphs and the average time was taken as the final result in
order to account for the random nature of the graph gen-
eration process. In Table 1, an overview of the experiments
is given. The cost Cs of substituting labels was set to one
and the cost of inserting and deleting edges or vertices was
set to five.

In the first experiment, we examined the influence of the
size of the model graphs and the number of label distor-
tions on the run time performance of NSG and TA. In the
beginning, a single model graph consisting of 10 vertices
and 15 edges was randomly generated. From this model
graph an input graph was derived by copying its vertices
and edges and distorting its vertex labels according to the
specified number of label errors. Note that the model and
the input graph were structurally isomorphic and only the
labels were distorted. The number of label errors was
gradually increased from one to 10 and for each setting a
new input graph was generated. The number of vertices in
the model and input graph was also increased from 10 to 36
along with the number of edges that was increased from 15
to 48. There were a total of 10 vertex and no edge labels
used in this experiment. Hence, in a graph of 30 vertices,
there were on average three vertices with identical labels.
The result of the first experiment is displayed in Fig. 5. The
lower (upper) plane in the right corner denotes the times of
NSG (TA). Clearly, NSG outperforms TA for a growing
model graph size and also for a growing number of label
errors in the input graph.

TABLE 1
PARAMETERS OF THE EXPERIMENTS

Experiments Parameters for the graph generation

Nr. Vertices Edges Labels Error Database Cs Cd,Ce

1 10 - 36 15 - 48 10 1 - 10 1 1 5

2
a 20 30 10 10 1 - 10 1 5

3 20 30 3 - 10 1 - 7 1 1 5

4
b

20 - 40 30 - 60 10 1 - 10 1 1 5

5 10 - 100 15 - 150 20 5 1 1 5

6 20 30 10 5 1 - 100 1 5

a. The size of the common subgraph of the models was increased from five to 18 vertices.
b. Only the size of the input graph was varied, while the size of the model graph was fixed at 20 vertices.

MESSMER AND BUNKE: A NEW ALGORITHM FOR ERROR-TOLERANT SUBGRAPH ISOMORPHISM DETECTION 501

In the experiment described above, there was only one
model graph in the database. Consequently, NSG’s ability
to share common substructures among different model
graphs could not be studied. Therefore, in the second ex-
periment, we varied both the number of model graphs in
the database and the size of the subgraph that was common
to all the model graphs. Each of the model graphs consisted
of 20 vertices and 30 edges. The size of the database was
gradually increased from one to 10 model graphs. For each
size of the database, we also varied the size of the common

subgraph starting with five vertices and ending with 18
vertices. Thus for a database with 10 model graphs and a
common subgraph of size 18, each model graph consisted
of an identical subgraph with 18 vertices and 27 edges and
a unique subgraph with two vertices and a single edge. The
number of distorted labels was set to 10. In Fig. 6, the aver-
age computation times for the second experiment are given.
TA is linearly dependent on the size of the database, while
NSG has only sublinear dependency.

So far, the number of available labels for the model and
the input graphs was constantly kept at 10. Previous re-
search conducted by the authors has shown that the exact
version of NSG (where no graph edit operations are al-
lowed) performs poorly when the number of labels is
small [14]. Therefore, in the third experiment, we exam-
ined the influence of the number of labels on the perform-
ance of the algorithms. There was exactly one model
graph consisting of 20 vertices and 30 edges in the data-
base. The number of labels was varied between three and
10. Thus, in the beginning, there were on the average ap-
proximately seven vertices in the model graph with iden-
tical labels. In the end, for 10 labels, there were on the av-
erage two vertices with identical labels. The edges were all
unlabeled. The number of distorted vertex labels in the
input graph was also varied between one and seven. The
results of this experiment are documented in Fig. 7. Addi-
tionally, in Fig. 8, a cut through Fig. 7 along the axis of the
number of labels is given for a constant label error of five.
For a decreasing number of labels, the performance of
NSG became rapidly worse, i.e., for four labels NSG was
already slower than TA.

In all of the experiments described so far, the model
and the input graphs were always of equal size. Thus, we
were in fact looking for ec graph isomorphisms. In the
fourth experiment, we explicitly increased the size of the
input graph from 20 to 40 vertices along with the edges
that were increased from 30 to 60 while the size of the
model graph remained constant at 20 vertices and 30
edges. At the same time, the number of errors in the labels
of the input graph was varied between one and 10. The

Fig. 5. Time in seconds for an increasing number of vertices in the
model graphs and an increasing number of label errors in the input
graph (lower plane in the right corner denotes NSG, upper plane de-
notes TA).

Fig. 6. Time in seconds for a growing number of model graphs in the
database and a growing common subgraph of the model graphs (lower
plane in the right corner denotes the time of NSG, upper plane denotes
the time of TA).

Fig. 7. Time in seconds for a growing number of labels and a growing
number of label errors (lower plane in the right corner denotes the time
of NSG, upper plane in the right corner denotes the time of TA).

Fig. 8. Cut through Fig. 7 along the label axis with a constant label error
of four.

502 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 5, MAY 1998

results of this experiment are given in Fig. 9. We observe
that TA again required more time than NSG for both an
increasing error and an increasing input graph size.

The previous experiments have shown that NSG is very
efficient for graphs with up to 20 vertices and databases
containing at most 10 model graphs. In order to explore the
limits of NSG with respect to the size of the model graphs
and the size of the database, we performed two more ex-
periments. In the fifth experiment, documented in Fig. 10,
the size of the model and input graph was increased
from 10 to 100 vertices along with the edges that were
increased from 15 to 150. There were 20 different vertex
labels available and the labels of five input graph verti-
ces were distorted by one unit. Notice that the computa-
tion time of TA is only plotted for graphs with less than 50
vertices for which it already required more than 80 sec-
onds while NSG required in the same situation only 0.5
second. In the limit, when the model graph consisted of
100 vertices and 150 edges, NSG required only five sec-
onds on the average.

In the sixth experiment, documented in Fig. 11, we tested
the behavior of NSG for large databases of graphs. We gen-
erated a growing database of model graphs starting at one
and ending at 50 model graphs. Each graph consisted of 20
vertices and 30 edges. Unlike the second experiment, where
a common subgraph was explicitly defined, the graphs in
this experiment were generated independently of each
other. However, the total number of labels was restricted to
10 such that common subgraphs of various sizes naturally
evolved. As was to be expected, NSG’s performance was
only sublinearly dependent on the size of the database.
While TA required 40 seconds for a database containing 10
models, NSG finished within three seconds for a database
containing 50 models.

Further experiments are described in [14].

5 DISCUSSION AND CONCLUSIONS

In this paper, we introduced a new method for the com-
putation of optimal error-correcting subgraph isomor-
phisms from a set of a priori known model graphs to an
input graph. The novelty of our approach is the off-line
preprocessing of the database of model graphs. In this

preprocessing step, the model graphs are compiled into a
representation in which common subgraphs of different
model graphs are stored only once. At run time, this rep-
resentation is used to detect the optimal error-correcting
subgraph isomorphism from any of the model graphs to
the input graph in time that is only sublinearly dependent
on the database size. Furthermore, the compact represen-
tation of the model graphs allows the implementation of
an efficient future cost estimation function.

In the practical experiments, it was confirmed that the
new algorithm is more efficient than the conventional al-
gorithm in many cases. In particular, the new algorithm
outperforms the conventional algorithm in situations
where the model graphs consist of labeled vertices and the
cost of the edit operations adequately model the actual
label distortions and structural errors. However, the new
algorithm is badly fitted for situations where the model
graphs are unlabeled or only labeled in the edges, and
where unlikely distortions occur. Nonetheless, even in
these situations its ability to compactly represent the
model graphs remains an advantage such that it eventu-

Fig. 9. Time in seconds for a growing number of vertices in the input
graph and a growing number of label errors (lower plane in the right
corner denotes the time of NSG, upper plane in the right corner de-
notes the time of TA).

Fig. 10. Time in seconds for an increasing number of vertices in the
model graphs and a constant label error of five.

Fig. 11. Time in seconds for an increasing number of models in the
database and a constant label error of five.

MESSMER AND BUNKE: A NEW ALGORITHM FOR ERROR-TOLERANT SUBGRAPH ISOMORPHISM DETECTION 503

ally outperforms the conventional algorithm when the
database of models grow very large.

The new method was described for unrestricted, general
graphs and a set of edit operations that are powerful enough
to correct any kind of graph distortion. Consequently, the
adaption of the new method to specific applications is
straightforward. Furthermore, due to the principle of divid-
ing the model graphs into smaller subgraphs, there is a po-
tential for parallelization inherent in the new method.

A first application in the field of document image analy-
sis, i.e., graphical symbol recognition and automatic symbol
acquisition, was presented by the authors in [13]. The
drawings and the graphical symbols in this application are
represented by attributed relational graphs. Instances of
known symbols are detected in the drawing by determining
subgraph isomorphisms from these symbol graphs to the
graph representing a complete input drawing. Due to the
fact that the symbol graphs are represented by the compact
decomposition structure described in the present paper, the
time complexity of the method is only sublinearly depend-
ent on the number of different symbols. Additionally, the
proposed application also contains a learning component.
This learning component is closely connected to the graph
matching procedure. It makes use of the fact that the da-
tabase of known symbols can be incrementally updated.
For example, new symbols can be added to the database
during runtime without the need to recompile the data-
base from scratch.

ACKNOWLEDGMENT

This work was part of a project of the Priority Program SPP
IF, No. 5003-34285, funded by the Swiss National Science
Foundation.

REFERENCES

[1]� H. Bunke and G. Allerman, “Inexact Graph Matching for Struc-
tural Pattern Recognition,” Pattern Recognition Letters, vol. 1, no. 4,
pp. 245-253, 1983.

[2]� J. Ben-Arie and A.Z. Meiri, “3D-Object Recognition by Optimal
Matching Search of Multinary Relation Graphs,” Computer Vision,
Graphics, and Image Processing, vol. 37, pp. 345-361, 1987.

[3]� W.J. Christmas, J. Kittler, and M. Petrou, “Structural Matching in
Computer Vision Using Probabilistic Relaxation,” IEEE Trans. Pat-
tern Analysis and Machine Intelligence, vol. 17, no. 8, pp. 749-764,
Aug. 1995.

[4]� M.S. Costa and L.G. Shapiro, “Analysis of Scenes Containing
Multiple Non-Polyhedral 3D Objects,” C. Braccini, L. DeFloriani,
and G. Vernazza, eds., Lectures Notes in Computer Science 974: Im-
age Analysis and Processing. Springer Verlag, 1995.

[5]� M.A. Eshera and K.S. Fu, “A Graph Distance Measure for Image
Analysis,” IEEE Trans. Systems, Man, and Cybernetics, vol. 14, no. 3,
pp. 398-408, May 1984.

[6]� J. Feng, M. Laumy, and M. Dhome, “Inexact Matching Using Neu-
ral Networks,” E.S. Gelsema and L.N. Kanal, eds., Pattern Recogni-
tion in Practice IV: Multiple Paradigms, Comparative Studies, and Hy-
brid Systems, pp. 177-184. North-Holland, 1994.

[7]� C.L. Forgy, “Rete, A Fast Algorithm for the Many Pattern/Many
Object Pattern Match Problem,” Artificial Intelligence, vol. 19, pp.
17-37. Elvesier, 1982.

[8]� M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. Freeman and Company, 1979.

[9]� J. Kittler, W.J. Christmas, and M. Petrou, “Probabilistic Relaxation
for Matching of Symbolic Structures,” H. Bunke, ed., Advances in
Structural and Syntactic Pattern Recognition, pp. 471-480. World Sci-
entific, 1992.

[10]� S.W. Lee, J.H. Kim, and F.C.A. Groen, “Translation- Rotation- and
Scale Invariant Recognition of Hand-Drawn Symbols in Sche-
matic Diagrams,” Int’l J. Pattern Recognition and Artificial Intelli-
gence, vol. 4, no. 1, pp. 1-15, 1990.

[11]� S.W. Lu, Y. Ren, and C.Y. Suen, “Hierarchical Attributed Graph
Representation and Recognition of Handwritten Chinese Char-
acters,” Pattern Recognition, vol. 24, pp. 617-632, 1991.

[12]� H.S. Lee and M.I. Schor, “Match Algorithms for Generalized Rete
Networks,” Artificial Intelligence, pp. 255-270, 1992.

[13]� B.T. Messmer and H. Bunke, “Automatic Learning and Recogni-
tion of Graphical Symbols in Engineering Drawings,” K. Tombre
and R. Kasturi, eds., Graphics Recognition, Lecture Notes in Com-
puter Science, vol. 1,072, pp. 123-134. Springer Verlag, 1996.

[14]� B.T. Messmer, “Efficient Graph Matching Algorithms for Preproc-
essed Model Graphs,” PhD thesis, Institut für Informatik und
angewandte Mathematik, Universität Bern, Switzerland, 1995.

[15]� N.J. Nilsson, Principles of Artificial Intelligence. Palo Alto, Calif.:
Tioga, 1980.

[16]� K. Sengupta and K.L. Boyer, “Organizing Large Structural
ModelBases,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 17, no. 4, Apr. 1995.

[17]� A. Sanfeliu and K.S. Fu, “A Distance Measure Between Attributed
Relational Graphs for Pattern Recognition,” IEEE Trans. Systems,
Man, and Cybernetics, vol. 13, pp. 353-363, 1983.

[18]� L.G. Shapiro and R.M. Haralick, “Structural Descriptions and
Inexact Matching,” IEEE Trans. Pattern Analysis and Machine Intel-
ligence, vol. 3, pp. 504-519, 1981.

[19]� L.G. Shapiro and R.M. Haralick, “Organization of Relational
Models for Scene Analysis,” IEEE Trans. Pattern Analysis and Ma-
chine Intelligence, vol. 4, pp. 595-602, 1982.

[20]� H. Sossa and R. Horaud, “Model Indexing: The Graph-Hashing
Approach,” Proc. IEEE Conf. Computer Vision and Pattern Recogni-
tion, pp. 811-814, 1992.

[21]� D.S. Seong, H.S. Kim, and K.H. Park, “Incremental Clustering of
Attributed Graphs,” IEEE Trans. Systems, Man, and Cybernetics,
vol. 23, no. 5, pp. 1,399-1,411, 1993.

[22]� W.H. Tsai and K.S Fu, “Error-Correcting Isomorphisms of Attrib-
uted Relational Graphs for Pattern Recognition,” IEEE Trans. Sys-
tems, Man, and Cybernetics, vol. 9, pp. 757-768, 1979.

[23]� R.A. Wagner and M.J. Fischer, “The String-to-String Correction
Problem,” J. Assoc. Computing Machinery, vol. 21, no. 1, pp. 168-
173, 1974.

[24]� E.K. Wong, “Three-Dimensional Object Recognition by Attributed
Graphs,” H. Bunke and A. Sanfeliu, eds., Syntactic and Structural
Pattern Recognition- Theory and Applications, pp. 381-414. World
Scientific, 1990.

[25]� A.K. Wong, M. You, and A.C. Chan, “An Algorithm for Graph
Optimal Monomorphism,” IEEE Trans. Systems, Man, and Cyber-
netics, vol. 20, no. 3, pp. 628-636, 1990.

[26]� L. Xu and E. Oja, “Improved Simulated Annealing, Boltzmann
Machine, and Attributed Graph Matching,” L. Almeida, ed., Lec-
ture Notes in Computer Science, vol. 412, pp. 151-161. Springer Ver-
lag, 1990.

Bruno T. Messmer received his master’s in
computer science in 1992 from the University of
Berne for his work on applying the RETE algo-
rithm to graph matching. For this work, he won
the 1992 IBM Switzerland artificial intelligence
prize. After having worked for one year at a soft-
ware company designing financial real-time ap-
plications, he continued his work on graph
matching at the University of Berne. In 1995, he
received a PhD in computer science for devel-
oping new algorithms for efficient graph matching

from the University of Berne. Dr. Messmer is an artificial intelligence
expert currently working for Swiss Telecom in the domain of network
planning, design, optimization, and the development of object-oriented
software frameworks. His main interests include graph matching, pat-
tern recognition, case-based reasoning, and search algorithms.

Dr. Messmer has published more than 16 articles. He has also
implemented a general graph-matching toolkit in C++ that has been
integrated in a number of different applications. He can be contacted
via Bruno.Messmer@swisscom.com or messmer@iam.unibe.ch.

504 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 5, MAY 1998

Horst Bunke received his MS and PhD degrees
in computer science from the University of Er-
langen, Germany in 1974 and 1979, respectively.
He was a member of the scientific staff at the
University of Erlangen from 1974 to 1984. From
1980 to 1981, he was on a postdoctoral leave
visiting Purdue University, West Lafayette, Indi-
ana, and, in 1983, he held a temporary appoint-
ment at the University of Hamburg, Germany. In
1984, he joined the University of Bern, Switzer-
land, where he is a full professor in the Com-

puter Science Department. He was department chairman from
199201996. In 1997, he became Dean of the Faculty of Science. Dr.
Bunke held visiting positions at the IBM Los Angeles Scientific Center
(1989), the University of Szeged, Hungary (1991), the University of
South Florida at Tampa (1991 and 1996), the University of Nevada at
Las Vegas (1994), and Kagawa University, Takamatsu, Japan (1995).

Dr. Bunke is a fellow the the International Association for Pattern
Recognition (IAPR), editor-in-charge of the International Journal of
Pattern Recognition and Artificial Intelligence, and editor-in-chief of the
book series on Machine Perception and Artificial Intelligence by World
Scientific Publishing Co. He was on the program and organization
committee of many conferences and served as a referee for numerous
journals and scientific organizations. He has more than 250 publica-
tions, including 20 books. He is a member of the AAAI, the IEEE Com-
puter Society, the Pattern Recognition Society, the European Associa-
tion for Signal Processing, and other scientific organizations. His cur-
rent interests include pattern recognition, machine vision, and artificial
intelligence.

