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Abstract 

In classical finite-domain constraint satisfaction problems, the assumption made is that only 
one value is associated with only one variable. For example, in pattern recognition one variable 
is associated with only one segmented region. However, in practice, regions are often over- 
segmented which results in failure of any one to one mapping. This paper proposes a definition 
of finite-domain constraint satisfaction problems with bilevel constraints in order to take into 
account a many to one relation between the values and the variables. The additional level of 
constraint concerns the data assigned to the same complex variable. Then, we give a definition of 
the arc-consistency problem for bilevel constraint satisfaction checking. A new algorithm for arc 
consistency to deal with these problems is presented as well. This extension of the arc-consistency 
algorithm retains its good properties and has a time complexity in O(en3d2) in the worst case. 
This algorithm was tested on medical images. These tests demonstrate its reliability in correctly 
identifying the segmented regions even when the image is over-segmented. @ 1997 Elsevier 
Science 3.V. 
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1. Int~uction 

Pattern recognition can be regarded as a matching problem between an abstract de- 
scription of what is to be recognized and the concrete description of what is observed. Se- 
mantic nets are a suitable way to describe many complex entities [ I]. This kind of prob- 
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lem can be seen as a Finite-Domain Constraint Satisfaction Problem (FDCSP) which 
provides a theoretical framework within which the problem can be solved [ 5,6,15-181. 
The FDCSP is defined by two finite sets: a set of variables and a set of constraint 

relations between these variables. A solution to an FDCSP is an assignment of values, 

taken from finite domains, to variables satisfying all constraints. 

In the case of pattern recognition with a semantic net, the semantic links can represent 
the constraints and the variables are the labels of the different parts of the image. 

However, to our knowledge, this approach has seldom been applied to pattern recogni- 

tion. One reason could be the inconsistencies between the classical definition of FDCSP 
and some particular aspects of image analysis. Indeed, the labeling of parts of an image 
is rarely a one to one process because the segmentation step often yields over-segmented 

regions. This is even more true in three-dimensional multi-slice images where a structure 
can appear on several slices. Each slice where the structure appears introduces a new 
segmented region. In a multi-slice image a single structure is composed of different 

regions which by definition means that the structure is over-segmented. To label this 

kind of data, we might think that it is enough to bring together regions in a unique three- 

dimensional object. Then, the idea is to find a partition of the set of regions according 
to an equivalence relation, each class corresponding to a three-dimensional object. In 
some cases, the transitive closure of the spatial relation “A overlaps B” can fit with this 

approach. With such a partition, a morphism can be defined to work directly with the 
equivalence classes instead of the individual regions. The relations between equivalence 

classes are inherited from the relations between their elements. Unfortunately it is not 
always so simple. The overlapping of regions from two consecutive slices does not 

guarantee that these regions belong to the same object. In most practical cases, it is 

impossible to make a prior grouping before constraint satisfaction checking. However, 
some properties can be found to decide if the grouping of some regions is possible or 

not. In spite of this uncertainty, it is worth taking advantage of these properties in the 

labeling process. But to deal with this uncertainty, we have to manage simultaneously 
two interdependent criteria: the satisfaction of local constraints and the satisfaction of 
compatibility to group data. 

To adapt the framework of the FDCSP for such problems we propose to define the 
class of FDCSP for complex variables with bilevel constraints ( FDCSPBC), one level 

co~esponding to inter-variable constraints and the other co~esponding to the satisfaction 
of compatibility between data assigned to the same variable. In order to solve FDCSP, 
many approaches have tried to find a local evaluation of constraints 12,l l-13,19,20]. 

Currently, the best-known levels of partial consistency are arc and path consistency. 

Several arc-consistency algorithms show interesting theoretical and practical optimality 
properties [2,10,13,14, 191. We propose a new definition of the arc-consistency (AC) 
problem fitted to FDCSPBC and we call it ACec. Then, we adapt a we&known algorithm 
called AC4 [ 131 to this problem. This new algorithm called AC&C retains the good 

properties of time complexity. 
This paper is organized as follows: Section 2 describes the notation used in this paper, 

gives basic definitions and studies the limits of classical arc-consistency problems. It 
gives the new definitions of FDCSP p,c and ACBC as well. Section 3 describes the A&C 
algorithm and its properties. Section 4 describes an application of the A&tc algorithm 
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to cerebral Nuclear Magnetic Resonance images. Section 5 states the conclusions of this 

work. 

2. Preliminaries 

2.1. Constraint satisfaction problem 

We use the following conventions: 
Variables are represented by the natural numbers 1,. . . , n. Each variable i has an 

associated domain D,. 
All constraints are binary and relate two distinct variables. A constraint relating two 

variables i and j is denoted by C;j. 
C;; ( L’, w) is the Boolean value obtained when variables i and j are replaced by values 

c and w respectively. TC;,; (u, w) denotes the negation of the Boolean value C;; (v, w) . 
Let R be the set of these constraining relations. We use D to denote the union of all 

domains and d the size of the largest domain. 
A finite-domain constraint satisfaction problem consists of finding all sets of values 

{a~,. ,a,,}, al x ... x a, E DI x . . x D,, for (1,. . . ,n> satisfying all relations 
belonging to 72.. 

In this classical definition of FDCSP, one variable is associated with one value. 

This assumption cannot hold for some classes of problems where we need to associate 
a variable with a set of linked values. We call this new problem the Finite-Domain 

Constraint Satisfaction Problem with Bilevel Constraints (FDCSP& and define it as 
follows: 

Definition 1. Let Cmpi be a compatibility relation associated with i, such that (a, b) E 

Cmpi iff a and b are compatible. Clearly, Cmpi is reflexive and symmetric. 

Let C;,; be constraint between i and j. A pair S;, Sj such that S; c Di and Sj c Dj 
satisfies C;,;, written S;,Sj b C;j, iff VU; E Si, 3ai E Si and a,; E Sj, such that (a;,~;) E 

Cmpi and (ai,a.j) E Cij and ‘da,; E Sj, 3a; E S; and a; E S;, such that (a,;,~;) E Cmpj 
and (U;,U$) E C,. 

Sets {SI , . . . , Sn} satisfy FDCSPBC iff VC;; S;, S; k C;;. 

We associate a graph G to a constraint satisfaction problem in the following way: 

l G has a node i for each variable i, 
l two directed arcs (i, j) and (j, i) are associated with each constraint C;j, 
l arc(G) is the set of arcs of G and e is the number of arcs in G, 
l node(G) is the set of nodes of G and n is the number of nodes in G. 

2.2. Arc-consistency problem 

The standard definitions of arc consistency are the following: 

Definition 2. Let (i, j) E arc(G). Arc (i, j) is arc-consistent with respect to Di and 
D, iff ‘V’U E Di, 3~ E Dj: Ci,j( U, w). 
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Fig. I. h is a good candidate for a given node called “center” if there exists a region on the left of b and 

another one on the right of b. In 2 dimensions b satisfies the two relations ( 1). but if b is made up of two 

overlapped regions bl and b2 (2), neither bl nor b2 satisfies the relations. However if we bring together bl 

and 172 in a unique object b, the relations are satisfied. 

Definition 3. Let P = D1 x . . . x D,. A graph G is arc-consistent with respect to P iff 

‘Y’(i, j) E arc(G): (i, j) is arc-consistent with respect to D; and Dj. 

The purpose of an arc-consistency algorithm is, given a graph G and a set P, to 

compute P’, the largest arc-consistent domain for G in P. 
However such an algorithm cannot classify a set of data in a node of the graph as 

we would like to do in over-segmented image interpretation. Indeed, let bl and b2 be 

two over-segmented regions of the same object associated with the node i. Let c be the 

only region associated with a node j such that Cii( bl, c) and let d be the only region 
associated with a node k such that Cik( 62, d). Assuming that no region is in relation 

with bl by the constraint Cik and no region is in relation with b2 by constraint C;j, the 
arc-consistency algorithm will remove bl from node i because it does not satisfy Cik 
and b2 from node i because it does not satisfy Cii (cf. Fig. 1) instead of keeping both. 
Of course, if we already knew that bl and b2 are parts of the same object, it would be 

easy to avoid the failure of the arc-consistency principle by making an appropriate data 
grouping. Unfortunately, it is very unusual to have this previous knowledge because our 
segmentation is a function of the noise of the image and cannot be predicted. 

However, it is often possible to define some relation of compatibility specifying if 
two regions could belong to a same object. This relation will be denoted by Cmpi (cf. 
Definition 1). The following example illustrates such a Cmpi relation. 

Example 4. Let Rii be the transitive closure of the symmetrical relation “u overlaps 
b”. Let Ri2 be the relation “u is in the close neighbourhood of b”, where the close 
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Fig. 2. (1, h, c, d, e, f, 8, h are regions having spatial relations between each other. 

neighbourhood is defined by a maximum distance from one object to another in the 
horizontal plane. We define the relation of compatibility Cmpi for a node i as follows: 

For a E Di and b E Di, Cmpi(~, b) iff Rit (u, b) or R~(u, b) or 3~ E Di such 

that Rit (u, C) and Ri2 (c, b) 

In the situation illustrated by Fig. 2, we have Cmpi( a, d), Cmpi( d, f) and -Cmpi( a, f) 

This relation is not transitive. Consequently Cmpi is not an equivalence relation. We can 
see that the object d is compatible with two different sets: {a, b, c, d} and {e, d, f, g, h}. 

This situation is often encountered: for example in a scene with trees, when the 
branches of the two trees are interlaced. Another case is the brain, where invaginations 

of superficial cortical grey matter (cf. a, b, c, d in Fig. 2) must be distinguished from 
deep structures which are adjacent but distinct (e, f, g in Fig. 2). Then, in that case it 

is not possible to make a previous grouping. 

Then, we have to define a new class of problems called arc-consistency problems 
with bilevel constraints. It is associated with the FDCSPBC and it is defined as follows: 

Definition 5. Let (i, j) E arc(G). Arc (i, j) is arc-consistent with respect to D; and 

D.; iff Vu E S,, 3 E Si, 3w E <i: Cmpi(u,t) and Ci,i(t, w). (u and t could be identical.) 

The definition of an arc-consistent graph, given Definition 5, remains unchanged. The 
purpose of an arc-consistency algorithm with bilevel constraints is, given a graph G and 

a set P, to compute P’, the largest arc-consistent domain with bilevel constraints for G 
in P. 

3. A&C algorithm: arc-consistency algorithm with bilevel constraints 

3. I. Principle 

Considering the previous remarks, we propose a new algorithm working with bilevel 
constraints whatever they are. For that purpose, we adapt the AC4 algorithm proposed 



326 A. Deruyver, K HodC/Artificial Intelligence 93 (1997) 321-335 

Fig. 3. Structure of a node. (I, h and c are the labels which satisfy the unary relations of the node I 

by Mohr and Henderson in 1986 [2,5,19] to solve the ACB~ problem. We call this 
algorithm A&C (cf. Fig. 4). 

For A&C, we give a new definition of a node i belonging to node(C). 
Now a node is made up of a kernel and a set of interfaces associated with each 

arc which comes from another linked node (cf. Fig. 3). In addition, an intra-node 

compatibility relation Cmpi is associated with each node of the graph. It describes the 
semantic link between different subparts of an object which could be associated with 

the node. 

Definition 6. Let i E node(G), then Di is the domain corresponding to the kernel of i 

and the set Zi = {Dij 1 (i, j) E arc(G)} is the set of interfaces of i. 

As in algorithm A&, the domains are initialized with values satisfying unary node 

constraints and there are two main steps: an initialization step and a pruning step. 

However, whereas in AC4 a value was removed from a node i if it had no direct support, 
in AC&C, a value is removed if it has no direct support and no indirect support obtained 
by using the compatibility relation Cmpi. 

Then, for each i E node(G), the initialization step initializes the domains Di and D;; 

(cf. Fig. 4). This step consists of: 
l assigning to the kernel Di all the values b which satisfy the unary node constraints, 

as in the AC4 algorithm (for example, in image analysis we can consider criteria 
of shape, size or orientation), 

l assigning to the interfaces Dij, all the values b E Di such that 3~ E D,i Ci,i (b, C) . 
Then we have a cleaning step which removes values which do not satisfy local constraint. 
The cleaning step of a kernel is done by the procedure CleanKernel. 

The pruning step updates the nodes as a function of the removals made by the previous 
step to keep the arc consistency. For each couple (j, w) where j E node(G) and w E Dj, 
AC4ac associates a set of couples (i, u) (i E node(G) and u E Di) supported by (j, w). 
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begin AGsc 
Step I: Construction of the data structures. 

1 InitQueue( Q) ; 
2 for each i E node(G) do 

3 for each b E Di do 

4 begin 

5 S[ i, b] := empty set; 

6 end; 
7 for each (i,j) E arc(G) do 
8 for each b E D;j do 
9 begin 

10 Total := 0; 

11 for each c E Dji do 

12 if Cii(b,c) then 

13 begin 

14 Total := Total + 1 

15 S[j, c] := S[j, c] U (i, b); 

16 end 
17 if Total = 0 then 

18 begin 
19 Di,; I= Dij - {b}; 

20 end; 
21 else Counter[ (i, j) , b] := Total; 

22 end; 
23 for each i E node(G) do 
24 CleanKernel( Di, IiT Q) ; 

Step 2: Pruning the inconsistent labels 

25 While not EmptyQueue do 
26 begin 
27 DeQueue( i, b, Q); 

28 for each (j, c) E S[i, b] do 
29 begin 
30 Counter[ (i, j) , cl := Counter[ (i, j) , c] - 1; 

31 if Counter[(i,j),c] =0 then 
32 begin 
33 Dij I= Di, - {c}; 

34 CleanKernel( Di, Zi, Q); 

35 end; 
36 end; 
31 end; 
38 end A&C; 

Fig. 4. The AC& algorithm. 
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These sets are noted by S[j, w]. It uses a counter, Counter[ (i,j), b], which is the 
number of supports for the value b and the constraint associated with the arc (i, j). 

When a label is removed from one interface, the procedure CleanKernel is called such 
that the kernel in question is updated (cf. Fig. 4). 

In addition, this algorithm, like all algorithms for arc consistency, works with a queue 

containing elements removed from the domains and which have to be reconsidered by 
the algorithm. In A&C it contains pairs (i, u), where i E node(G) and u E D;. Those 
elements have to be reconsidered by the algorithm because they could support other 
couples (j, w). If a removed element was the unique support of (j, w) then (j, w) has 

to be removed as well. The study of operations on the queue will help us to prove 
properties of this algorithm. To manage the queue, we need several operations: 

l The procedure InitQueue which initializes the queue to an empty set. 
l The function EmptyQueue which tests if the queue is empty. 

l The procedure EnQueue( i, U, Q) is used whenever the value u is removed from Di. 

It introduces elements (i, U) in the queue Q, where i is a node and u E D. 

l The procedure DeQueue removes one element from the queue. 

All these operations on queues require the same computational time. The procedure 
CleanKernel uses this notion of queue and is defined as follows (cf. Fig. 5): 

procedure CleanKernel(in Di, Ii, inout Q) 

Pm: i E node(G), Di # {}, VD, E Zi, D,i f {} 

Post: Ai = {b E D; 1 IDi, E If, lPath;( 6, Di,i)}Q = Q,,,, U Ai. 

where PUthi( b, Dii) denotes the existence of a path in the node i between b E Di and the 

interface D;,i according to the intra-node compatibility relation Cmpi. Then Puthi( b, D;,j) 

iff 3c E D;i such that Cmpi( b, c). 

3.2. Properties of AC&C 

3.2. I. Termination of A&C 

In order to prove the termination of our algorithm, we use a data structure Status 
also introduced by [ 191 to prove the termination of AC’s; this data structure is a two- 

dimensional array, the first dimension being on nodes and the second on values. However, 
to prove the termination of A&C we need an additive possible status called “rejected 
interface”. 

Then, the A&C algorithm has to preserve the following invariant: 

Status( i, b) = present iff b E Di 
rejected iff b +! Di and (i, 6) $ Q 

suspended iff b $! Di and (i, b) E Q 
rejected interface iff 3j E node(G), b $ D,j and b E Di. 

Then the effect of the procedures manipulating the queue on Status is: 

procedure InitQueue( out Q) 
Post: Vi E node(G), 

Stutus( i, b) = present if b E Di, rejected if b $! D, 
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Procedure CleanKemel(in l)i, Ii, out Q) 
1 begin 
2 for each b E Di do 
3 for each Dij E Ii do 
4 if -Puthi( 6, Dii> then 
5 begin 
6 EnQueue( i, b, Q); 
7 D; = Dj - {b); 
8 for each Dii E Ii do 
9 begin 
10 Dij = Dfi - (b}; 
11 end; 
12 end; 
13 end; 

Fig. 5. Implementation of CleanKernel. 

procedure EnQueue( in i, b, inout Q) 

Pm: i E node(G), b E Di 
Stutus( i, 6) = rejected interface 

Post: Status( i, 6) = suspended. 

function EmptyQueue( in Q) 

Post: Vi E node{ G), tib E Di 
Stutus( i, 0) # suspended. 

procedure DeQueue( inout Q, out i, b) 
Post: Stutus( i, b) = rejected 

Then the effect of CleanKernel on Status is: 

procedure CleanKernel( in Di, Zi, inout Q) 

PIV: i E node(G), Di f {}, tlD, E Ii, Dij Z {}, 3b E D; 
such that Status(i, b) = rejected interface. 

Post: Ai ={b E Di / 30, E Ii, ~Pathi(b, Dij)) and \Jb E Ai 
Status(i, b) = suspended and Q = Q,,, U Ai. 

A simple implementation of CleanKernel is shawn in Fig. 5. 
Then we can prove the following theorem: 

Theorem 7. Algorithm A&c (cf. Fig. 4) has the fo~lo~~ngprope~ies: 

(1) 
(2) 

(3) 

Proof. 

The invariant on data structure Status holds on line 2 and 25. 
A&C enqueues and dequeues at most O(nd) elements, and hence the size of 
the queue is at most 0( nd) , where n is the number of nodes. 
A&c always terminates. 

To prove this theorem we consider the algorithm of Fig. 4. 
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Property (1) holds initially. Assuming that it holds in line 2, it is still true after the 
iteration 7-22. The line 17 makes sure that (i,b) is rejected interface for all b such 
that 3j E node(G) with Counter[ (i, j) , b] = 0. Then the invariant is true in line 25. 
Indeed the post-condition of CleanKernel makes sure that ‘db E Di, ‘di E node(G), (i, b) 
is suspended if 3j E node(G) such that lPath;( 6, Dij). The execution of lines 26-37 

preserves this invariant. Lines 33-34 make sure that (j, c) is rejected interface for all c 
such that there exists i E node(G) where Counter[ (j, i) , c] = 0. Line 34 corresponding 
to the calling of CleanKernel preserves the invariant as seen before. So the invariant is 

verified at line 2 and 25. 

Property (2) holds because each element of Status is allowed to make only three 

transitions: 
l one from present to rejected interface through lines 19 and 33. 
l one from rejected interface to suspended through the procedure CleanKernel. 

o one from suspended to rejected through procedure DeQueue. 

Hence there can only be O(nd) dequeues and enqueues. 
Property (3) is a direct consequence of Properties ( 1) and (2) and the preconditions 

of the procedure Enqueue on the data structure Status. 17 

3.2.2. Correctness of ACQJC 
Next, we can prove the correctness of AC~BC. 

Theorem 8. G is arc-consistent whew A&C ter~~i~ates. 

Proof. Initial hypothesis: Let i E node(G) such that 3(i,j) E arc(G) and gc E 

Di. Assume that c is not supported directly or indirectly by the node j when AC&C 

terminates. In other words, ‘db E D,ji, Va E D,j, %k~pi( c, a) or Xi,j( a, b). 
If c E Di is not supported then either ( 1) it has never been supported, or (2) it was 

supported at a previous time. 
Case 1: In this case, there is a contradiction with c E D; because the initialization 

step would have not put c in Di (Line 7 of AC~BC). 
Cuse 2: 

l Let bl _ . . b,, (m > 0) be the set of elements of D,j supporting c at this previous 
time. Since at the end c is not supported it means that b, . . . b, are removed during 
AC&c execution from D,. 

l The removing of bl . . b,,, inserts them in the queue (2. 

* All these elements b, . . b,, are necessarily dequeued from Q when AC&C termi- 

nates and the Counter[ (j, i), c] becomes necessarily equal to zero when A&C 
terminates (lines 27-30). 

l At this time c is removed from the interface f)ij (line 33). 

l By hypothesis c is not supported indirectly. 
It means that ‘da E D,j, -Cmpi(c, a) or ‘Cij(a, b). 
Then we have two cases to study: 
- First, if we have tin E Llij, Xmpifc, a), then we have -Pat&( c, 0,). In this 

case CleanKernel removes c from Di (lines 4-7 of Fig. 5) which is contrary to 
the initial hypothesis. 
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Procedure CleanKernel( in Di, Zi, out Q) 

1 begin 
2 for each Di.i E Ii do 

3 begin 
4 R Z= Dii; 

5 While (SearchSucc( Di, R, Cmpi, S) ) do 

6 begin 
7 R := RU S; 

8 end 

9 for each b E D, - R do 
10 begin 
11 EnQueue( i, b, Q) ; 
12 for each Dii E ii do 
13 Di,i I= Dii - (6); 

14 end; 

15 Di I= R; 

16 end; 

17 end; 

Fig. 6. Optimized implementation of CleanKernel 

- The second case is ‘Jb E Dji, Vu E Dij, Cmpi(c, a) and TCij(a, b). This case 
cannot happen. Indeed from line 17 of A&c, Vb E D,i -Cij( a, b) + a @ Di,i, 

The contra positive statement yields a E Dij + 3b E D.ii Cij(a, b). SO Vu E D/i, 

Cmpi( c, a) + 3b E Dji such that Cij (a, b) 
In conclusion the initial hypothesis leads to a contradiction. So G is arc-consistent when 

A&C terminates. 0 

3.2.3. Compkxity of A&C 

The implementation of CleanKernel presented in Section 3.1 (Fig. 5) was given 

for pedagogical reasons but it is not optimal in time. However, we can find another 
way to implement this procedure (cf. Fig. 6). We introduce the function Search- 
Succ(in Di, R, Cmpi, out S) which looks for successors of elements of Di in the 
set R by using the relation Cmpi. Each new successor is marked such that successors 
already encountered will not be considered again. This function is repeated until no 

new successor can be found. Once we quit the loop, regions which are not in the 
set R have to be suspended. Indeed, Vb E D,, if b # R then 3Dij E Ii, Vc E Dii 

-Cmpi( b, c). The Post and Pre conditions of the function SearchSucc are defined as 
follows: 

Function SearchSucc( in Di, R, Cmpi, out S) 
Pre: i E node(G), Di # {} 

Post: S = {b E Di ) b $ R, 3~ E R, Cmpi(b, c)} and SearchSucc ti (S # {}) 

Theorem 9. CleanKernel is in 0(n2d) in the worst case. 
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Proof. The number of Interfaces Dij to check is at most equal to n. The function 
SearchSucc is such that an element already in R can not be added again to R. Since 

the size of R is bounded by d, the loop in line 5 is repeated at most d times. As the 

time complexity of lines 9-14 is in O(nd) the time complexity of CleanKernel is in 

O(r?d). Cl 

Theorem 10. The time ~ornp~~i~ of AC4Bc is bounded by O( en3d2) in the worst case. 

Proof. As in the AC4 algorithm the time complexity of lines l-22 is in 0( ed2). In line 

23 the procedure CleanKernel is called n times. Then the time complexity of lines 23-24 
is in O(n”d). Then the time complexity of the initialization step is in 0(ed2 f n”d). 

As in AC4 algorithm the line 30 is executed ed2 times. The test of line 31 is true at 
most ed times, then CleanKernel is executed at most ed times. The time complexity 
of line 29-36 is in 0( en2d2). Then the complexity is in 0( n3d + ed* + en2d2). This 

complexity is bounded by O(en”d*) in the worst case. Then the time complexity of 

AC&c is bounded by 0(en3d2) in the worst case. Cl 

Theorem 11. If the graph is totally connected and if there are no more than two 
relations between two nodes then the time complexity of AC&c is in 0(e2d2) in the 
worst case. 

Proof. If the graph is totally connected then we can say that e = n* - n. Then O(e) = 
0( ~2~). As in the general case the complexity is in O(n3d + ed* + en2d2), we get 
O(n”d + ed* + en2d2) = 0( n3d + n2d2 + n4d2) = 0(n4d2) = O(e2d2). Then in that 

case the time complexity of AC& is in O(e2d2) in the worst case. 0 

4. Appli~tio~ 

The algorithm was applied to a problem of image interpretation [ 81. We worked with 

a set of Nuclear Magnetic Resonance cerebral images. The aim is to detect the main 

anatomical cerebral regions (cortex, basal nuclei, thalamus, etc.). Anatomical textbooks 
describe every anatomic~ part of the brain in terms of unary relations (shape, size, 
orientation) and binary relations (spatial relations between two parts). We represented 
this knowledge in a semantic graph corresponding to spatial relations of brain grey matter 

structures (Fig. 7). To simplify this graph, the interfaces of each node are not drawn, but 
in fact each node has the structure described in Fig. 3. The algorithm of segmentation 
described in [7] provides 200 regions, some of which are over-segmented. For each 
anatomical part (node of the semantic graph), we define unary relations corresponding to 
shape, size and orientation criteria. These criteria are stored in a file for each segmented 

region. Only segmented regions satisfying the relations associated with the node in 
question are assigned to the kernel of this node. It was also necessary to build for each 

segmented region b, a set T,,( b!,) of regions above 4, and a set T&,,( b,,) of regions 
below 4. In each of these sets, we distinguish regions which may belong to the same 
object (more then 30% of pixels overlap b,) as b, from those that do not belong to 
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*. 0: cerehcllum 

,’ 
I: right thalemus 

,’ \. 
,’ 

2: Mt thalamus 
‘\ 

F-Y’ ‘\- 3: right lenticular nuclc~s 

6: head of the right caudate nucleus 

7: hody <Ii the left caudate nucleus 

- - - - over-under 
Q 

X: body ol the right caudatc nucleus 
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- right-left 
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- hchind-in front of 

0 
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0 

+W under-behind 
14: septum lwdum 

Fig. 7. Semantic graph to label the human brain 

the same object as bp. Then, let T(b,) = T,,(b,) U Tdow,,(bp) and Z(b,)) be the set of 
pixels of the region bp. If cl E T( b,) and I( b,)) Ti I( cl> > 30% then b!, and cl could 

belong to the same object. If i is the node associated with this object then Cmpi(b,, cl). 
The semantic graph has 14 nodes and 44 arcs. Tests have been made successfully 

on twenty images and more than 200 regions. After a short time (Zmin 3Osec on an 
HP710, 50 MHz, with 32 MByte RAM), each anatomical part is correctly identified. 
We can remark that this algorithm is particularly adapted to this problem: the different 
parts of the brain always have the same spatial relations with one another, even if the 

distances can change from one brain to another. Moreover, the cerebral structures are 

all in close relation with one another, with much redundancy in the spatial relations. 
This redundancy sufficiently constrains the data to avoid undecidability between several 

solutions. For other images with another semantic graph, the arc consistency might 
be insufficient for solving the problem and in that case we may need path or gIoba1 
consistency. 

5. Conclusion 

Until now, few applications of image inte~retation have used semantic graph and 
arc-consistency checking. This is because usually, the classical definition of FDCSP that 
governs AC checking does not fit well with the data to analyze. Indeed, perfect image 
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segmentation is very rare and merging regions often requires expert knowledge. This 
knowledge is necessary for region labeling as well. In fact, region merging and region 

labeling are interdependent and the classical strategy of arc-consistency checking cannot 
cope with this difficulty. The extension of AC for FDCSP with bilevel constraints solves 

this problem and provides a more general tool. Moreover the proposed extension of AC4 

retains the good properties of AC4 and has a reasonable time complexity. The notion of 
intra-node compatibility introduced in FDCSP RC can also be adapted to AC5 [ 191 and 
AC6 [2] because it does not basically change the way of checking arc consistency. We 

only change the definition of “node” by introducing for a node the notions of “kernel” 

and “interfaces”. The CleanKernel procedure can easily be adapted for AC5 and AC6 in 
the same way as for ACJ. To avoid a long and tedious formal development far removed 

from our initial need to label NNR images, we have limited our discussion to arc 
consistency for binary relations. However, the framework of FDCSPBC can be extended 

to n-ary relations as defined in [9] and to path-consistency checking as well [ 131, 
providing a larger field of application for the constraint satisfaction approach. 
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