
Artificial Intelligence 93 (1997) 321-335

Artificial
Intelligence

Research Note

Constraint satisfaction problem with bilevel
constraint: application to interpretation

of over-segmented images
A. Deruyver a**, Y. Hod6 b

a I. MI: Strasbourg Sud, Dtiparfement d’Inf~rmatjq~e, 72 route du Rhin, 67400 Illkirch, France
h EO.R.E.N.A.l?, Centre Hospiialier de Rou~ach~ 682.50 Rot@ach, France

Received March 1996; revised April 1997

Abstract

In classical finite-domain constraint satisfaction problems, the assumption made is that only
one value is associated with only one variable. For example, in pattern recognition one variable
is associated with only one segmented region. However, in practice, regions are often over-
segmented which results in failure of any one to one mapping. This paper proposes a definition
of finite-domain constraint satisfaction problems with bilevel constraints in order to take into
account a many to one relation between the values and the variables. The additional level of
constraint concerns the data assigned to the same complex variable. Then, we give a definition of
the arc-consistency problem for bilevel constraint satisfaction checking. A new algorithm for arc
consistency to deal with these problems is presented as well. This extension of the arc-consistency
algorithm retains its good properties and has a time complexity in O(en3d2) in the worst case.
This algorithm was tested on medical images. These tests demonstrate its reliability in correctly
identifying the segmented regions even when the image is over-segmented. @ 1997 Elsevier
Science 3.V.

Keywords: Semantic graph; Arc consistency; Constraint satisfaction; Image interpretation

1. Int~uction

Pattern recognition can be regarded as a matching problem between an abstract de-
scription of what is to be recognized and the concrete description of what is observed. Se-
mantic nets are a suitable way to describe many complex entities [I]. This kind of prob-

* Corresponding author. E-m~I:de~y~iutsud.u-strasbg.~.

0004-3702/97/$17.00 @ 1997 Elsevier Science B.V. All rights reserved
PN s0004-~702(97)00022-2

lem can be seen as a Finite-Domain Constraint Satisfaction Problem (FDCSP) which
provides a theoretical framework within which the problem can be solved [5,6,15-181.
The FDCSP is defined by two finite sets: a set of variables and a set of constraint

relations between these variables. A solution to an FDCSP is an assignment of values,

taken from finite domains, to variables satisfying all constraints.

In the case of pattern recognition with a semantic net, the semantic links can represent
the constraints and the variables are the labels of the different parts of the image.

However, to our knowledge, this approach has seldom been applied to pattern recogni-

tion. One reason could be the inconsistencies between the classical definition of FDCSP
and some particular aspects of image analysis. Indeed, the labeling of parts of an image
is rarely a one to one process because the segmentation step often yields over-segmented

regions. This is even more true in three-dimensional multi-slice images where a structure
can appear on several slices. Each slice where the structure appears introduces a new
segmented region. In a multi-slice image a single structure is composed of different

regions which by definition means that the structure is over-segmented. To label this

kind of data, we might think that it is enough to bring together regions in a unique three-

dimensional object. Then, the idea is to find a partition of the set of regions according
to an equivalence relation, each class corresponding to a three-dimensional object. In
some cases, the transitive closure of the spatial relation “A overlaps B” can fit with this

approach. With such a partition, a morphism can be defined to work directly with the
equivalence classes instead of the individual regions. The relations between equivalence

classes are inherited from the relations between their elements. Unfortunately it is not
always so simple. The overlapping of regions from two consecutive slices does not

guarantee that these regions belong to the same object. In most practical cases, it is

impossible to make a prior grouping before constraint satisfaction checking. However,
some properties can be found to decide if the grouping of some regions is possible or

not. In spite of this uncertainty, it is worth taking advantage of these properties in the

labeling process. But to deal with this uncertainty, we have to manage simultaneously
two interdependent criteria: the satisfaction of local constraints and the satisfaction of
compatibility to group data.

To adapt the framework of the FDCSP for such problems we propose to define the
class of FDCSP for complex variables with bilevel constraints (FDCSPBC), one level

co~esponding to inter-variable constraints and the other co~esponding to the satisfaction
of compatibility between data assigned to the same variable. In order to solve FDCSP,
many approaches have tried to find a local evaluation of constraints 12,l l-13,19,20].

Currently, the best-known levels of partial consistency are arc and path consistency.

Several arc-consistency algorithms show interesting theoretical and practical optimality
properties [2,10,13,14, 191. We propose a new definition of the arc-consistency (AC)
problem fitted to FDCSPBC and we call it ACec. Then, we adapt a we&known algorithm
called AC4 [131 to this problem. This new algorithm called AC&C retains the good

properties of time complexity.
This paper is organized as follows: Section 2 describes the notation used in this paper,

gives basic definitions and studies the limits of classical arc-consistency problems. It
gives the new definitions of FDCSP p,c and ACBC as well. Section 3 describes the A&C
algorithm and its properties. Section 4 describes an application of the A&tc algorithm

A. Deruyver, I! Hode’/Artificial Intelligence 93 (1997) 321-335 323

to cerebral Nuclear Magnetic Resonance images. Section 5 states the conclusions of this

work.

2. Preliminaries

2.1. Constraint satisfaction problem

We use the following conventions:
Variables are represented by the natural numbers 1,. . . , n. Each variable i has an

associated domain D,.
All constraints are binary and relate two distinct variables. A constraint relating two

variables i and j is denoted by C;j.
C;; (L’, w) is the Boolean value obtained when variables i and j are replaced by values

c and w respectively. TC;,; (u, w) denotes the negation of the Boolean value C;; (v, w) .
Let R be the set of these constraining relations. We use D to denote the union of all

domains and d the size of the largest domain.
A finite-domain constraint satisfaction problem consists of finding all sets of values

{a~,. ,a,,}, al x ... x a, E DI x . . x D,, for (1,. . . ,n> satisfying all relations
belonging to 72..

In this classical definition of FDCSP, one variable is associated with one value.

This assumption cannot hold for some classes of problems where we need to associate
a variable with a set of linked values. We call this new problem the Finite-Domain

Constraint Satisfaction Problem with Bilevel Constraints (FDCSP& and define it as
follows:

Definition 1. Let Cmpi be a compatibility relation associated with i, such that (a, b) E

Cmpi iff a and b are compatible. Clearly, Cmpi is reflexive and symmetric.

Let C;,; be constraint between i and j. A pair S;, Sj such that S; c Di and Sj c Dj
satisfies C;,;, written S;,Sj b C;j, iff VU; E Si, 3ai E Si and a,; E Sj, such that (a;,~;) E

Cmpi and (ai,a.j) E Cij and ‘da,; E Sj, 3a; E S; and a; E S;, such that (a,;,~;) E Cmpj
and (U;,U$) E C,.

Sets {SI , . . . , Sn} satisfy FDCSPBC iff VC;; S;, S; k C;;.

We associate a graph G to a constraint satisfaction problem in the following way:

l G has a node i for each variable i,
l two directed arcs (i, j) and (j, i) are associated with each constraint C;j,
l arc(G) is the set of arcs of G and e is the number of arcs in G,
l node(G) is the set of nodes of G and n is the number of nodes in G.

2.2. Arc-consistency problem

The standard definitions of arc consistency are the following:

Definition 2. Let (i, j) E arc(G). Arc (i, j) is arc-consistent with respect to Di and
D, iff ‘V’U E Di, 3~ E Dj: Ci,j(U, w).

324 A. Deruyver; Y Hode’/Artijcial Intelligence 93 (1997) 321-335

/WA
One slice image

Two slices image

Fig. I. h is a good candidate for a given node called “center” if there exists a region on the left of b and

another one on the right of b. In 2 dimensions b satisfies the two relations (1). but if b is made up of two

overlapped regions bl and b2 (2), neither bl nor b2 satisfies the relations. However if we bring together bl

and 172 in a unique object b, the relations are satisfied.

Definition 3. Let P = D1 x . . . x D,. A graph G is arc-consistent with respect to P iff

‘Y’(i, j) E arc(G): (i, j) is arc-consistent with respect to D; and Dj.

The purpose of an arc-consistency algorithm is, given a graph G and a set P, to

compute P’, the largest arc-consistent domain for G in P.
However such an algorithm cannot classify a set of data in a node of the graph as

we would like to do in over-segmented image interpretation. Indeed, let bl and b2 be

two over-segmented regions of the same object associated with the node i. Let c be the

only region associated with a node j such that Cii(bl, c) and let d be the only region
associated with a node k such that Cik(62, d). Assuming that no region is in relation

with bl by the constraint Cik and no region is in relation with b2 by constraint C;j, the
arc-consistency algorithm will remove bl from node i because it does not satisfy Cik
and b2 from node i because it does not satisfy Cii (cf. Fig. 1) instead of keeping both.
Of course, if we already knew that bl and b2 are parts of the same object, it would be

easy to avoid the failure of the arc-consistency principle by making an appropriate data
grouping. Unfortunately, it is very unusual to have this previous knowledge because our
segmentation is a function of the noise of the image and cannot be predicted.

However, it is often possible to define some relation of compatibility specifying if
two regions could belong to a same object. This relation will be denoted by Cmpi (cf.
Definition 1). The following example illustrates such a Cmpi relation.

Example 4. Let Rii be the transitive closure of the symmetrical relation “u overlaps
b”. Let Ri2 be the relation “u is in the close neighbourhood of b”, where the close

A. Deruyver; I: Hode’lArtijicial Intelligence 93 (1997) 321-335 325

a e
4 , < >

b d f

C E h

c--) ww v Down

Left Right

Fig. 2. (1, h, c, d, e, f, 8, h are regions having spatial relations between each other.

neighbourhood is defined by a maximum distance from one object to another in the
horizontal plane. We define the relation of compatibility Cmpi for a node i as follows:

For a E Di and b E Di, Cmpi(~, b) iff Rit (u, b) or R~(u, b) or 3~ E Di such

that Rit (u, C) and Ri2 (c, b)

In the situation illustrated by Fig. 2, we have Cmpi(a, d), Cmpi(d, f) and -Cmpi(a, f)

This relation is not transitive. Consequently Cmpi is not an equivalence relation. We can
see that the object d is compatible with two different sets: {a, b, c, d} and {e, d, f, g, h}.

This situation is often encountered: for example in a scene with trees, when the
branches of the two trees are interlaced. Another case is the brain, where invaginations

of superficial cortical grey matter (cf. a, b, c, d in Fig. 2) must be distinguished from
deep structures which are adjacent but distinct (e, f, g in Fig. 2). Then, in that case it

is not possible to make a previous grouping.

Then, we have to define a new class of problems called arc-consistency problems
with bilevel constraints. It is associated with the FDCSPBC and it is defined as follows:

Definition 5. Let (i, j) E arc(G). Arc (i, j) is arc-consistent with respect to D; and

D.; iff Vu E S,, 3 E Si, 3w E <i: Cmpi(u,t) and Ci,i(t, w). (u and t could be identical.)

The definition of an arc-consistent graph, given Definition 5, remains unchanged. The
purpose of an arc-consistency algorithm with bilevel constraints is, given a graph G and

a set P, to compute P’, the largest arc-consistent domain with bilevel constraints for G
in P.

3. A&C algorithm: arc-consistency algorithm with bilevel constraints

3. I. Principle

Considering the previous remarks, we propose a new algorithm working with bilevel
constraints whatever they are. For that purpose, we adapt the AC4 algorithm proposed

326 A. Deruyver, K HodC/Artificial Intelligence 93 (1997) 321-335

Fig. 3. Structure of a node. (I, h and c are the labels which satisfy the unary relations of the node I

by Mohr and Henderson in 1986 [2,5,19] to solve the ACB~ problem. We call this
algorithm A&C (cf. Fig. 4).

For A&C, we give a new definition of a node i belonging to node(C).
Now a node is made up of a kernel and a set of interfaces associated with each

arc which comes from another linked node (cf. Fig. 3). In addition, an intra-node

compatibility relation Cmpi is associated with each node of the graph. It describes the
semantic link between different subparts of an object which could be associated with

the node.

Definition 6. Let i E node(G), then Di is the domain corresponding to the kernel of i

and the set Zi = {Dij 1 (i, j) E arc(G)} is the set of interfaces of i.

As in algorithm A&, the domains are initialized with values satisfying unary node

constraints and there are two main steps: an initialization step and a pruning step.

However, whereas in AC4 a value was removed from a node i if it had no direct support,
in AC&C, a value is removed if it has no direct support and no indirect support obtained
by using the compatibility relation Cmpi.

Then, for each i E node(G), the initialization step initializes the domains Di and D;;

(cf. Fig. 4). This step consists of:
l assigning to the kernel Di all the values b which satisfy the unary node constraints,

as in the AC4 algorithm (for example, in image analysis we can consider criteria
of shape, size or orientation),

l assigning to the interfaces Dij, all the values b E Di such that 3~ E D,i Ci,i (b, C) .
Then we have a cleaning step which removes values which do not satisfy local constraint.
The cleaning step of a kernel is done by the procedure CleanKernel.

The pruning step updates the nodes as a function of the removals made by the previous
step to keep the arc consistency. For each couple (j, w) where j E node(G) and w E Dj,
AC4ac associates a set of couples (i, u) (i E node(G) and u E Di) supported by (j, w).

A. Deruyver, Y Hode’/Arti$cial Intelligence 93 (1997) 321-335 321

begin AGsc
Step I: Construction of the data structures.

1 InitQueue(Q) ;
2 for each i E node(G) do

3 for each b E Di do

4 begin

5 S[i, b] := empty set;

6 end;
7 for each (i,j) E arc(G) do
8 for each b E D;j do
9 begin

10 Total := 0;

11 for each c E Dji do

12 if Cii(b,c) then

13 begin

14 Total := Total + 1

15 S[j, c] := S[j, c] U (i, b);

16 end
17 if Total = 0 then

18 begin
19 Di,; I= Dij - {b};

20 end;
21 else Counter[(i, j) , b] := Total;

22 end;
23 for each i E node(G) do
24 CleanKernel(Di, IiT Q) ;

Step 2: Pruning the inconsistent labels

25 While not EmptyQueue do
26 begin
27 DeQueue(i, b, Q);

28 for each (j, c) E S[i, b] do
29 begin
30 Counter[(i, j) , cl := Counter[(i, j) , c] - 1;

31 if Counter[(i,j),c] =0 then
32 begin
33 Dij I= Di, - {c};

34 CleanKernel(Di, Zi, Q);

35 end;
36 end;
31 end;
38 end A&C;

Fig. 4. The AC& algorithm.

328 A. Deruyver: Y HodP/Artijciul Intelligence 93 (1997) 321-335

These sets are noted by S[j, w]. It uses a counter, Counter[(i,j), b], which is the
number of supports for the value b and the constraint associated with the arc (i, j).

When a label is removed from one interface, the procedure CleanKernel is called such
that the kernel in question is updated (cf. Fig. 4).

In addition, this algorithm, like all algorithms for arc consistency, works with a queue

containing elements removed from the domains and which have to be reconsidered by
the algorithm. In A&C it contains pairs (i, u), where i E node(G) and u E D;. Those
elements have to be reconsidered by the algorithm because they could support other
couples (j, w). If a removed element was the unique support of (j, w) then (j, w) has

to be removed as well. The study of operations on the queue will help us to prove
properties of this algorithm. To manage the queue, we need several operations:

l The procedure InitQueue which initializes the queue to an empty set.
l The function EmptyQueue which tests if the queue is empty.

l The procedure EnQueue(i, U, Q) is used whenever the value u is removed from Di.

It introduces elements (i, U) in the queue Q, where i is a node and u E D.

l The procedure DeQueue removes one element from the queue.

All these operations on queues require the same computational time. The procedure
CleanKernel uses this notion of queue and is defined as follows (cf. Fig. 5):

procedure CleanKernel(in Di, Ii, inout Q)

Pm: i E node(G), Di # {}, VD, E Zi, D,i f {}

Post: Ai = {b E D; 1 IDi, E If, lPath;(6, Di,i)}Q = Q,,,, U Ai.

where PUthi(b, Dii) denotes the existence of a path in the node i between b E Di and the

interface D;,i according to the intra-node compatibility relation Cmpi. Then Puthi(b, D;,j)

iff 3c E D;i such that Cmpi(b, c).

3.2. Properties of AC&C

3.2. I. Termination of A&C

In order to prove the termination of our algorithm, we use a data structure Status
also introduced by [191 to prove the termination of AC’s; this data structure is a two-

dimensional array, the first dimension being on nodes and the second on values. However,
to prove the termination of A&C we need an additive possible status called “rejected
interface”.

Then, the A&C algorithm has to preserve the following invariant:

Status(i, b) = present iff b E Di
rejected iff b +! Di and (i, 6) $ Q

suspended iff b $! Di and (i, b) E Q
rejected interface iff 3j E node(G), b $ D,j and b E Di.

Then the effect of the procedures manipulating the queue on Status is:

procedure InitQueue(out Q)
Post: Vi E node(G),

Stutus(i, b) = present if b E Di, rejected if b $! D,

A. Deruyver; I! HodJ/Art@cial Intelligence 93 (1997) 321-335 329

Procedure CleanKemel(in l)i, Ii, out Q)
1 begin
2 for each b E Di do
3 for each Dij E Ii do
4 if -Puthi(6, Dii> then
5 begin
6 EnQueue(i, b, Q);
7 D; = Dj - {b);
8 for each Dii E Ii do
9 begin
10 Dij = Dfi - (b};
11 end;
12 end;
13 end;

Fig. 5. Implementation of CleanKernel.

procedure EnQueue(in i, b, inout Q)

Pm: i E node(G), b E Di
Stutus(i, 6) = rejected interface

Post: Status(i, 6) = suspended.

function EmptyQueue(in Q)

Post: Vi E node{ G), tib E Di
Stutus(i, 0) # suspended.

procedure DeQueue(inout Q, out i, b)
Post: Stutus(i, b) = rejected

Then the effect of CleanKernel on Status is:

procedure CleanKernel(in Di, Zi, inout Q)

PIV: i E node(G), Di f {}, tlD, E Ii, Dij Z {}, 3b E D;
such that Status(i, b) = rejected interface.

Post: Ai ={b E Di / 30, E Ii, ~Pathi(b, Dij)) and \Jb E Ai
Status(i, b) = suspended and Q = Q,,, U Ai.

A simple implementation of CleanKernel is shawn in Fig. 5.
Then we can prove the following theorem:

Theorem 7. Algorithm A&c (cf. Fig. 4) has the fo~lo~~ngprope~ies:

(1)
(2)

(3)

Proof.

The invariant on data structure Status holds on line 2 and 25.
A&C enqueues and dequeues at most O(nd) elements, and hence the size of
the queue is at most 0(nd) , where n is the number of nodes.
A&c always terminates.

To prove this theorem we consider the algorithm of Fig. 4.

330 A. DeruyveK Y: HodP/Artijiciul lntellipnce 93 (1997) 321-335

Property (1) holds initially. Assuming that it holds in line 2, it is still true after the
iteration 7-22. The line 17 makes sure that (i,b) is rejected interface for all b such
that 3j E node(G) with Counter[(i, j) , b] = 0. Then the invariant is true in line 25.
Indeed the post-condition of CleanKernel makes sure that ‘db E Di, ‘di E node(G), (i, b)
is suspended if 3j E node(G) such that lPath;(6, Dij). The execution of lines 26-37

preserves this invariant. Lines 33-34 make sure that (j, c) is rejected interface for all c
such that there exists i E node(G) where Counter[(j, i) , c] = 0. Line 34 corresponding
to the calling of CleanKernel preserves the invariant as seen before. So the invariant is

verified at line 2 and 25.

Property (2) holds because each element of Status is allowed to make only three

transitions:
l one from present to rejected interface through lines 19 and 33.
l one from rejected interface to suspended through the procedure CleanKernel.

o one from suspended to rejected through procedure DeQueue.

Hence there can only be O(nd) dequeues and enqueues.
Property (3) is a direct consequence of Properties (1) and (2) and the preconditions

of the procedure Enqueue on the data structure Status. 17

3.2.2. Correctness of ACQJC
Next, we can prove the correctness of AC~BC.

Theorem 8. G is arc-consistent whew A&C ter~~i~ates.

Proof. Initial hypothesis: Let i E node(G) such that 3(i,j) E arc(G) and gc E

Di. Assume that c is not supported directly or indirectly by the node j when AC&C

terminates. In other words, ‘db E D,ji, Va E D,j, %k~pi(c, a) or Xi,j(a, b).
If c E Di is not supported then either (1) it has never been supported, or (2) it was

supported at a previous time.
Case 1: In this case, there is a contradiction with c E D; because the initialization

step would have not put c in Di (Line 7 of AC~BC).
Cuse 2:

l Let bl _ . . b,, (m > 0) be the set of elements of D,j supporting c at this previous
time. Since at the end c is not supported it means that b, . . . b, are removed during
AC&c execution from D,.

l The removing of bl . . b,,, inserts them in the queue (2.

* All these elements b, . . b,, are necessarily dequeued from Q when AC&C termi-

nates and the Counter[(j, i), c] becomes necessarily equal to zero when A&C
terminates (lines 27-30).

l At this time c is removed from the interface f)ij (line 33).

l By hypothesis c is not supported indirectly.
It means that ‘da E D,j, -Cmpi(c, a) or ‘Cij(a, b).
Then we have two cases to study:
- First, if we have tin E Llij, Xmpifc, a), then we have -Pat&(c, 0,). In this

case CleanKernel removes c from Di (lines 4-7 of Fig. 5) which is contrary to
the initial hypothesis.

A. Deruyvec Y Hodt!/Art@cial Intelligence 93 (I 997) 321-335 331

Procedure CleanKernel(in Di, Zi, out Q)

1 begin
2 for each Di.i E Ii do

3 begin
4 R Z= Dii;

5 While (SearchSucc(Di, R, Cmpi, S)) do

6 begin
7 R := RU S;

8 end

9 for each b E D, - R do
10 begin
11 EnQueue(i, b, Q) ;
12 for each Dii E ii do
13 Di,i I= Dii - (6);

14 end;

15 Di I= R;

16 end;

17 end;

Fig. 6. Optimized implementation of CleanKernel

- The second case is ‘Jb E Dji, Vu E Dij, Cmpi(c, a) and TCij(a, b). This case
cannot happen. Indeed from line 17 of A&c, Vb E D,i -Cij(a, b) + a @ Di,i,

The contra positive statement yields a E Dij + 3b E D.ii Cij(a, b). SO Vu E D/i,

Cmpi(c, a) + 3b E Dji such that Cij (a, b)
In conclusion the initial hypothesis leads to a contradiction. So G is arc-consistent when

A&C terminates. 0

3.2.3. Compkxity of A&C

The implementation of CleanKernel presented in Section 3.1 (Fig. 5) was given

for pedagogical reasons but it is not optimal in time. However, we can find another
way to implement this procedure (cf. Fig. 6). We introduce the function Search-
Succ(in Di, R, Cmpi, out S) which looks for successors of elements of Di in the
set R by using the relation Cmpi. Each new successor is marked such that successors
already encountered will not be considered again. This function is repeated until no

new successor can be found. Once we quit the loop, regions which are not in the
set R have to be suspended. Indeed, Vb E D,, if b # R then 3Dij E Ii, Vc E Dii

-Cmpi(b, c). The Post and Pre conditions of the function SearchSucc are defined as
follows:

Function SearchSucc(in Di, R, Cmpi, out S)
Pre: i E node(G), Di # {}

Post: S = {b E Di) b $ R, 3~ E R, Cmpi(b, c)} and SearchSucc ti (S # {})

Theorem 9. CleanKernel is in 0(n2d) in the worst case.

332 A. Deruyves I! Hode’/Arti&iul Intelligence 93 (1997) 321-335

Proof. The number of Interfaces Dij to check is at most equal to n. The function
SearchSucc is such that an element already in R can not be added again to R. Since

the size of R is bounded by d, the loop in line 5 is repeated at most d times. As the

time complexity of lines 9-14 is in O(nd) the time complexity of CleanKernel is in

O(r?d). Cl

Theorem 10. The time ~ornp~~i~ of AC4Bc is bounded by O(en3d2) in the worst case.

Proof. As in the AC4 algorithm the time complexity of lines l-22 is in 0(ed2). In line

23 the procedure CleanKernel is called n times. Then the time complexity of lines 23-24
is in O(n”d). Then the time complexity of the initialization step is in 0(ed2 f n”d).

As in AC4 algorithm the line 30 is executed ed2 times. The test of line 31 is true at
most ed times, then CleanKernel is executed at most ed times. The time complexity
of line 29-36 is in 0(en2d2). Then the complexity is in 0(n3d + ed* + en2d2). This

complexity is bounded by O(en”d*) in the worst case. Then the time complexity of

AC&c is bounded by 0(en3d2) in the worst case. Cl

Theorem 11. If the graph is totally connected and if there are no more than two
relations between two nodes then the time complexity of AC&c is in 0(e2d2) in the
worst case.

Proof. If the graph is totally connected then we can say that e = n* - n. Then O(e) =
0(~2~). As in the general case the complexity is in O(n3d + ed* + en2d2), we get
O(n”d + ed* + en2d2) = 0(n3d + n2d2 + n4d2) = 0(n4d2) = O(e2d2). Then in that

case the time complexity of AC& is in O(e2d2) in the worst case. 0

4. Appli~tio~

The algorithm was applied to a problem of image interpretation [81. We worked with

a set of Nuclear Magnetic Resonance cerebral images. The aim is to detect the main

anatomical cerebral regions (cortex, basal nuclei, thalamus, etc.). Anatomical textbooks
describe every anatomic~ part of the brain in terms of unary relations (shape, size,
orientation) and binary relations (spatial relations between two parts). We represented
this knowledge in a semantic graph corresponding to spatial relations of brain grey matter

structures (Fig. 7). To simplify this graph, the interfaces of each node are not drawn, but
in fact each node has the structure described in Fig. 3. The algorithm of segmentation
described in [7] provides 200 regions, some of which are over-segmented. For each
anatomical part (node of the semantic graph), we define unary relations corresponding to
shape, size and orientation criteria. These criteria are stored in a file for each segmented

region. Only segmented regions satisfying the relations associated with the node in
question are assigned to the kernel of this node. It was also necessary to build for each

segmented region b, a set T,,(b!,) of regions above 4, and a set T&,,(b,,) of regions
below 4. In each of these sets, we distinguish regions which may belong to the same
object (more then 30% of pixels overlap b,) as b, from those that do not belong to

A. Deruyver; Y. Hode’/Art$cial Intelligence 93 (1997) 321-335 333

*. 0: cerehcllum

,’
I: right thalemus

,’ \.
,’

2: Mt thalamus
‘\

F-Y’ ‘\- 3: right lenticular nuclc~s

6: head of the right caudate nucleus

7: hody <Ii the left caudate nucleus

- - - - over-under
Q

X: body ol the right caudatc nucleus

13 v: left suhstanria ni&ra

- right-left
IO: right suhstantia nip

, I I: ccl-ehral trunk

- hchind-in front of

0

12,13: undifferentiated tissue
0

+W under-behind
14: septum lwdum

Fig. 7. Semantic graph to label the human brain

the same object as bp. Then, let T(b,) = T,,(b,) U Tdow,,(bp) and Z(b,)) be the set of
pixels of the region bp. If cl E T(b,) and I(b,)) Ti I(cl> > 30% then b!, and cl could

belong to the same object. If i is the node associated with this object then Cmpi(b,, cl).
The semantic graph has 14 nodes and 44 arcs. Tests have been made successfully

on twenty images and more than 200 regions. After a short time (Zmin 3Osec on an
HP710, 50 MHz, with 32 MByte RAM), each anatomical part is correctly identified.
We can remark that this algorithm is particularly adapted to this problem: the different
parts of the brain always have the same spatial relations with one another, even if the

distances can change from one brain to another. Moreover, the cerebral structures are

all in close relation with one another, with much redundancy in the spatial relations.
This redundancy sufficiently constrains the data to avoid undecidability between several

solutions. For other images with another semantic graph, the arc consistency might
be insufficient for solving the problem and in that case we may need path or gIoba1
consistency.

5. Conclusion

Until now, few applications of image inte~retation have used semantic graph and
arc-consistency checking. This is because usually, the classical definition of FDCSP that
governs AC checking does not fit well with the data to analyze. Indeed, perfect image

334 A. Deruyver; r Hode’/Artijicial Intelligence 93 (I 997) 321-335

segmentation is very rare and merging regions often requires expert knowledge. This
knowledge is necessary for region labeling as well. In fact, region merging and region

labeling are interdependent and the classical strategy of arc-consistency checking cannot
cope with this difficulty. The extension of AC for FDCSP with bilevel constraints solves

this problem and provides a more general tool. Moreover the proposed extension of AC4

retains the good properties of AC4 and has a reasonable time complexity. The notion of
intra-node compatibility introduced in FDCSP RC can also be adapted to AC5 [191 and
AC6 [2] because it does not basically change the way of checking arc consistency. We

only change the definition of “node” by introducing for a node the notions of “kernel”

and “interfaces”. The CleanKernel procedure can easily be adapted for AC5 and AC6 in
the same way as for ACJ. To avoid a long and tedious formal development far removed

from our initial need to label NNR images, we have limited our discussion to arc
consistency for binary relations. However, the framework of FDCSPBC can be extended

to n-ary relations as defined in [9] and to path-consistency checking as well [131,
providing a larger field of application for the constraint satisfaction approach.

Acknowledgements

We thank Dr Paul Bailey and Dr Nicolas Bolo for their assistance with the preparation

of the manuscript.

References

\ I I D.H. Ballard and C.M. Brown, Computer lG.G:,n (Prentice-Hall, Englewood Cliffs, NJ, 1982).

[2 } C. Bessiere, Arc consistency and arc consistency again, Arf~ciul ~~~ell~ge~~e 65 (1994) 179-I 90.
13 I C. Bessibre and J.C. RCgin, An arc consistency algorithm optimal in the number of constraint checks,

in: Proceedings 6ih IEEE Internr~fionnl Conference on Tools for Artzjiciul Intelligence, New Orleans,

LA (1994) 397-403.

14 1 A. Beljid and Y. Belai’d, Reconnaissance des Formes, Methodes et Applications (InterEditions, Paris,

1992).

15 I J. Benmouffek, Y. Belard, A. Belaid and L. De Minacelli, RER: un systeme de reconnaissance

d’empreintes de rats, in: Proceedings @me Con@ AFCET: Reconnaissance des Formes et Intelligence

Ar~~~jelle, Lyon, France (199 1) .
[41 P Charman, A constraint based approach for the generation of Roor plans, in: Prf~~eedj~g.~ 6fh IEEE

I~lter~afi~J~ul Conjkrence on Tool.7 frr Art@%1 fntelligence, New Orleans, LA (1994) 555-561.

171 A. Deruyver, Y. Hode and L. Soufflet, A segmentation technique for cerebral NMR images, in:

Proceedings IEEE Conference on Image Processing 94, Austin, TX (1994) 7 16-720.

[8 1 A. Deruyver and Y. Hod& Semantic graph and arc consistency in “true” three dimensional image

labeling, in: Proceedings IEEE Internarional Conference on Imqe Processing 9.5, Washington, DC

(199.5) 619-622.

(9 \ H. Tolbat, F. Charpillet and J.P. Haton, Representing and propagating constraints in temporal reasoning,
in: Fr~~~eedi~g.~ fEEE Intern~i~i~~n~~l Conference rm Toolsjbr Arfi~~juf ~nteilige~ce, San Jose, CA (1991)

1X1-184.

j IO 1 T. Kokeny, A new arc consistency algorithm for CSPs with hierarchical domains, in: Proceedings 6th

IEEE International Conference on Tools wifh ArfiJciul Infelligence, New Orleans, LA (1994) 439-445.

1 I I I A.K. Mackwotth, Consistency in networks of relations, Artificial Intelligence 8 (1977) 99-1 18.

[12) A.K. Mackworth and E.C. Freuder, The complexity of some polynomial network consistency algorithms

for constraint satisfaction problems, Artificial Intelligence 25 (1985) 65-74.

A. Deruyver, E HodP/Art@iul Intelligence 93 (1997) 321-335 335

[I3 1 R. Mohr and T.C. Henderson, Arc and path consistency revisited, Artificial Inrelfigence 28 (1986)

225-233.

[141 R. Mohr and G. Masini, Good old discrete relaxation, in: Proceedings ECAI-88, Munich, Germany

(1988) 65 l-656.

I IS 1 J.A. Mulder, A.K. Mackworth and W.S. Havens, Knowledge structuring and constraint satisfaction: the
MAPSEE approach, IEEE Truns. Puttern Anul. Muchine Intelligence 10 (1988) 866-879.

I 16 1 H. Niemann, G.F. Sagerer, S. Schreder and E Kummert, ERNEST: a semantic network system for pattern

understanding, lEEE Trans. Pattern Anal. M&tine Intelligence 12 (1990) 883-905.

1 171 M. Pelillo and M. Refice, Learning compatibility coefficients for relaxation labeling processes. l/XE

Truns. Puttern Anal. Muclzine Intelligence 16 (1994) 933-945.
[I8 1 A. Rosenfeld, R. Hummel and S. Zucker, Scene labeling by relaxation operations, IEEE Truns. Systems

Mun Cybernet. 6 (1976) 420-433.
I 191 P. Van Hentenryck, Y. Deville and C.-M. Teng, A generic arc-consistency algorithm and its

specializations, Artijiciul Intelligence 57 (1992) 29 l-32 1.
I20 1 D.L. Waltz, Understanding line drawing of scenes with shadows, in: PH. Winston, ed., Psychology of

Computer Vish (McGraw-Hill, New York, 197.5) 19-9 I.

